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PREFACE . ¢ ] ¥

Py »

‘,f .1t i's our shared opinion that what Is learned in school mathe- -

math§§ diffars sharply from the outcomes desired by mathematics ' g
. ~ ) ' -

S

' educators. We feel that curriculum and instruction in school mathe- :
matics is heavily influenced by the reflections af ‘individuals who,

having successfully completed their own study, possess well organized
and coherent conceptualizations of a ve}y large bgdy of knowledge.

\ -
Within that body of knowledge is a tightly conceived logical network

A

’ ' - : :
which guides the organization of currﬁ%ulum materials and instructional o
P procedures for school mathemeijcs. Such a logical organization, the
reasoning goes, should produce the desired outcomes. €

'\h " Unfortunately many students study mathematics for years. and in
fv
the-end exhibit jarring voids in their own ab;!:ty to use mathematical
’ ]
tocls in very Stmp+e and presumaply logical ways LHero we flnd a dtlemma

» .
The nnvesttgatson we have reported is primarily a des&rlptlon of -

-

how. college students actually solve or fa‘l to solve algebraic equatlons

We Mave focused &n describing the behaviors exhibited together with the_.

-

spoken descriptions of process. |Where possiblg we have provided a
' -

;} theoreticdl framework for these data.. The reader will find evi&ence of

t?e thought processes which operate. They appear to us to be very dif-

f;renti even among good solVers, from those thoughts and actions which

seem to be logicél‘expectatfbns. Algebra may be generaiized aristetic'

. R from the mathemafl;iaﬁusspolnt of  view but our data suggest that few ////f
: | colfgge students héve\th;t perspective, | ' o

' ° s

. 8!




Perhaps. as researchers accumulate more information of the sort
4 .

‘reported here, the basis of curricula and instructional decisiomwill
[ 9

shift In direction away from “'what. logjcally ought to be the outcome'
oo .. toward ''what is.the observed outcome''.

This is our hope.
{
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CHAPTER 1
introdbction

Many high school graduates today are restricted in career choices
by the lack of adequate and proficient knowledge in mathematics. One
key component needed for entry especially into scientific caceers is

fluency in algebraic equation solving. This study was intended to

develop a coherent description of effective and efficient algEbraic

>

-

] .
equation solying and of those facggrs that interfere wiéh such perfor-~
mance. This is an early stage in aline bf~investigat{on waich should
ultimstely yhild implications for the }eardiné‘and teaching p? algebré,

This report presenfsdetailed.inform;tion about the way‘In'which‘
certsin university students solve and fail to solve eguaiions in elemen-
tary algebra. Understqnding.the solution process as }t is actually
carried out by students ‘will hopefulTy aid teachers to transﬁit success-
ful methods and prevent the gevelopm;nt of unsuccessful ones. Equation

olving involves a'comp{ex interplay of many forms of knéwledge. We

f

tr{sd to use our study of this” task to shed new light on such perennial
b s ' .
issues 'in the psychology of prodNem-solving as the role of understanding,

2s whll as more recently rajsed ﬁuestlons in‘the psychologx of skill,
in interpretfng‘the data, we lookid for three kinds of concldsions
relevant to education.: First, we tried to identify and classify the
difficulties %tuqents had, and to guess the mecganism tha§ pfodu;ed those
difficulties, whethe( the mechanism was lack of a specific piece of know~
© -
ledge or the failure to carry out a process. Such ideas about mechanisms

should be useful in suggesting countermeasures for these errors: an error

that results from a specific wrong idea cannot be overcome by emphas'l' on

C

: 11
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L - <areful or neat work, while an error in exccution might be. Second, we

compared the work of succes§Fu1‘and unsuccegs%ui sblvers.‘}ooking_for
ideas £hat might help ﬁake more solvers suécess%ul. We wanted to find
differences in the way solvers worked on the problems that go beyond
the presence or a?senc; of errors.

Tﬂird and more generally we tried to identify what must pe learned
by the student of equation -olving, following this question wharever it
led, We started frém the legal moves of the algebra game, were led
ey immediapcly to the knowledge that underlied an appropriate choice of

move, and eventually to the know}edqe that permits the legal moves and
iiiega! moves to be distinguished. We have also suggested that tgere is
information of a higher order relating these three kinds o; Knowledge
that may Se very important to learners and teachers. )
Psychologiét§ of problem=solving have long dist{nguished insightful
behavior from uninsightful, without being able to prgcise1§ trace the
boundary-between them. Equation solving is an interesting task partly
‘ because it is possible to eAvision both uninsightful and'insight%ul wa*s
T of performfng it. We have found human perf.rmance mixing these two
approaches, and have seen in some specif?c cases what‘@ndnrstandfng does
ana does not do, )
Recent work in the psychology o% skill by John,Sécly Brown and
others, some of it directed specifically to algebra, has suggégted how‘ _ v
the ability to pe “form a complex task is developed and how failures occur-

and are handled. We have examined segments of beiravior whi¢h can be used

as examples in evaluating andjpefhaps extending thece ideas.

Related work ‘

There has been 1ittle empirical study ‘of ordinary algébra, despite

bea

R'vt
A
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its importance. Brown and his associates %Brown, Burton, et al 1975)
: n - 9
.’ ’ . S
collected -and Fnte>§reted errors from college students ip remedial
z&\ h

*courses. The present work can be seen as an attempt to carry forwardj
. : x

3
Lo

¢
s

'thq ana%ysj% of solvirg behavior begun by~t§én¥h Matz (1979a, 1979b)

¥

/

. haé also been pursuing and extending gﬂisi@ork, concéntrafing on -
mechanism underlying errors. Davis and gooney (1977) have collected
errors from high school students. We hsve been able to supplement
their findings with data from a wider class of problems. Thé thgoret- \
ical work of Bundy (1975) in developing an equatlonysolving computer pro-
gram has been disgussed at some length below. -

The engerprise of developing detailed aécounts of behavior has béen'

. ot . .

‘carried out more widely in other areas of mathematics, especially arith-

] metic. Most closely related is the work of Suppes aha‘Horhiqgstar

(41972), that has been followed by Brown_ahd Burton (1978) and Larkin

L

f:' (1978) . The techniques of representing procedural knowledg%\developed'

in this later work, and i;Lartificiél 7ntelligence by Sacerdoti (1977),

)

are now being extended to simpler skills such as counting by several ‘

i

investigators. Van Le%n and Brown (1978) discussed these techniques. (;1

Neves (1979) is develo#ing a' model of the procesé of learning to solYve
gquations .from examples. L | . . ’
‘ L ( Coy | f i /
Overview of the study . ‘\\ . e ) -
o We coilected protocols from t#o Qroups of university students sgl;r"
wving elementary algebra equations. One grolp of students was selected ‘

; ¢

for proficiency from a populdtion of engineering and mathematics educa-

- ‘ﬁﬁon students. who were expected to be good solvers. The other group

was an unselected sample of,volunteer'from an introductory psychology

&

¢ +

= } BN
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course. Many students in this group were poor solvers, so we were able

~

e ” .

. ! % , T
tg,aé;pare good .and poor performance. Th?fwritten work ofeach student
o ’ SR I

and any sifken comments were retained for analysis, and zhe:.comments :

i)

were keyed to the yritten work .using . viéeo recordiné mad%hpf fh? sol-

ving session, | ‘ ”'_Q
"x\uﬁ To organize this large, rath;> unstructured body of data, we used
{i an_a}tificia} model of the solution process, ;aség on the work of Buﬁdy

(1973). This astificial m3£%14/described in detagq) below, is perhaps «

the simplest system réalistically capable of equaf}on sclving. The com-
' ‘ ‘ ' 4 AR .o
plex data actually obtained from human solvers can be compared wi th the
~ ! . — . ‘ ,

predictions of thiélsimple model to bring into relief thoés aspects'éf
human solving that deviate from it. This served td separate character-
” istics of the human performance-which simply reflect the demands of the
v y , ' . ’
task, and hence agree with tne simple model, from those that indicaféd g
the human contribution,

The body of the report is organized as follows. 'Foliowing a de-

[\
scription of the materials and data collection procedure, including the

recruitment of subjects, summary of performance on the task is given.

The §ﬁ%dy modei_, is then described, so that the details of performance
can be related to it, Strategy, errors, and specia) features of skilled
performance are considefed, followed by discussion of'éspects of the

*

data that require departures from the simple model.

B3 SOV
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CHAPTER 2 | ,
oo | | .
Development of the kesearch Instruments °
Prodedures and Performance Summary

- "

The equation solving behavior under investigation centers. around

the type of equation; (linear, quadra%ic, and’ formulas) found in

elemgntary and'iqfermediate ltevel high sc;;;Tigtgebra courses. Since
‘- oy

e

! A

the,contrast betwgegsgood and poor performance was to be made with

soTlege students, there were gquestions concerning the‘appropviateness
[N . I

of the equéijons to be used. A series of twetve (12) equations con-

taining such features as parentheses, fractions, signs, and literals
was pilot tested (see Table 2.1) with a small group (about 20) of

"N —_
subjects representing the population of less pijéjdient solvers.

{

Table 2.1
Equations Used in Pilot Testing

11 « 2x = 3x + 17

. 4x -2 =18 - 2
3. 0x =2 (x +1) -\1h ' Y, A=p + prt; solve for p
. ‘ ) |
5. 6(y=2) =3 (4-2) = y-i2 6. "3 - 3x _ B-kx
. . / 5 = |
\ A= [b+ 8. x+2 [x+2 ( +2)] = x+2
7 —7ﬁ) h; solve for b . . X
' ' ‘ s 4
9. 5 . & . 16, x% + 3 = (x+5)(x+9)  *
x+4 x4 '
el + LI 2. Lol 1y l-;' solve for x
X X+3 x-3 R X .y z

.

ot
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Piloffdata w:re examined for equations which were challenging, but

not cumbersome. On this basis, certain of the pilot equations were
omitted and new equations added. The final instrument is shown “in

Table 2.2, K

)
.'r a
Table 2.2
. Equiations used in Fi}st Session
I}A. A=p+prt; solve for p 1B, 2x = x2
. }-\ ) ¢
4. 11,1 N A
3 x 7 &n <t v + 5 5 solve for x
3AL 9{x+40) = 5(x+40) . 3B, 7(4x~1)i; 3(hx-1) + 4
'hg. xytyz = 2y; .solve for x . 4B, x+3+ L
R y ! 3+y - .
2 _
5A. 5 L x-10 5B, ] - x? ) G
10 X+5 = x .
6A. ¢x+2§x+1) = 4 68. x+2 (x+2(x+2)) = x+2
. | _ | ’ .
JA. x=2(x+]) = ]b , 7B.  6(x-2) -3 (4-2x) = x-12

This instrument consists of seven (7) paiE; of équations. Each ™ .
pair was designed to'probe for specific errors observed in the pilot
data, These 1h‘problem; were given to all‘subjccts in the fir;t of
two sesslons. In some cases the equatjons share specific structuraﬁ

'y

features, other times they vary in some systematic way.

} o~

'y
L
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: \ Corresponding to the seven pairs of equatxons‘used in Sessuon 1
AR - !
. .-
the seven triples of sfmclar equations shown in Table 2. 3 were con-
L“ .
strugted for-Sessuon 2. The latter were intended to permit an error o
. . e . " " é
. - . . ‘ .
seen in Session .l to be elicited for djscussion in Session 2. a3
\ Four pairs of more complex equations of the same general tupe as \vj>
thos'e for Session | were also prepared for usk in Session 2, to allow
‘ the performance of skilled solvers to be assessad on more d{ificult Y
. s Bl - (]
_material. These equations,are‘shown in Table 2.4 .
> o B , ' v
: d Table 2.3
. , . \\
Session Two Equations . /
for Unselected Group
3 1C . A = 2kg +2kh + 2wh solve for h
o e "
* : ‘—4 - \ .
N £ .
\
A
¥ v
: 2C
N ‘ . e
2D 2 s b+ 1/c
; x+] ' %
‘ 2t A ]/X + + 3=0 B
- 2 .
: 13
-~
\ .
x 9(7x-15) = 8(7x+15) + 7 B
. 3D 2(bx-2) +3/(2x-1) = 4
. 3E 2(3+x) = 4(x+3) F¢ -
~ s ’ M
4e Xy + yz + xz = | X
) y vy 5 ”3 )
' -
Lo bex + acx + abx + abe = 0 N
Le ax +.b§ + ab = 2x + 2a f kS

-

t

A

you
-
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DA L ) . .0 . L ‘ .,k,;;g
' - Table 2.3 continued - ‘ : P

‘ a : . SC T 3+x2 = 2) ) | s
_ . : \ ~ . , 1+x : ' . )

y S® .« o : | | (4+2/%) H ) . . o

‘( . . 'f’ ;. . B . o 2+ 7 \\ . )

B , b o2 . ‘ "

3(x+3)

. ‘ . . R . AY
_ 6¢C +”;(;+‘ - 1 | )
) | | X I: 3 _ ; “ .

Y : C6D . N X2 (x+2) -2
' x + 2, .

6 T (3¥R) 3ex = ] o \ .

: . _ . \ . : p
N . ] & .

™ JC : ) x=2{x-2(x~2)) = x-2

70 | x% = (%+1) (x-2) = 9

X

7 | | 3 o ox43 =5

Table 2.4

Session Two Equations .
ra for Selected Group

. ¢ AL /% + /X2 3 . | A2 3x+5(x-3) = 5x+3)-3(x-2)

¢
-~ ~ - 1/x + sz

- ) .2 . -
. Bl J1/x = p= | B2 _EE -c+d | .

Cl 2(kx+2) -3 (142x) = 0 | €2 ., 3(x+(atb))+2(b+(x+a)) = ¢
i; ~ D1 (r+z¥z)x - K D2 y+2(£2% = (4+y) GQQ) =]
. ’ ' 1/p+1/q d u x+1] x+l.v :
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An instrument for screening the more proficient, F}yen; solvers

on the basis of speed and accuracy was also developed.  Equations like

those in Table 2.2 or with -added complexity, were selscted.
) . ¥ . ’ -

tions f%n the screening_instrument are shown in

+

17,

]9' '

-

’

§

I
A}

x =10 + (10%)x

. 2
Gx - x+1 + 6 = 0

x+!
. L4
~N
“
r]
., o
v
19

18, x- + 7y4 _ 3y-bx; solve for(ﬁ)
. . y -

The equa-“
o J

Table 2.5.

3

Tab]e 2~S -~ .
> Equations Used to Screen
' Selected Group
3~ 2(x-5) = 2. ' 2. {2x-3) -3(x-6) = 4 . -
" ”_ ! 3x+8 o -4, 5-}[2x -2 (5"3X)] = 4(2-3x)
x+2  2-x X2l o
X2 | 2x43 ,5x o 6.2 15 .1 <~
I 5=y '3 . 97T X¥37% - )
- ! : T .,
(2x+1) (8x-3) % (Ux-1)° 8. (& ﬁ (_5_) =3
, X x-2

2, S ' :

A ="Tyr™ + Z'Tfrh; solve for h 10. l - ]_ + l.’ J_ solve for b
: a b ¢ *d"’ o
S .

X, + x - xH) -3 -(Zx - _]__)-1 12. Ix=x" =0
6. ‘ 'S 12 '
x-3(x+3) = 0 | B, 1 (x#2) =5 (x~8) _ 1(x¥12)
:;{/ o . 2 3
b | 6. 2 _ 1
x-2 v ( x2-1 x-1 v

5

y y

N




. SubJects. Two groups of university st

.schoo! students.

10

] . . -
' \‘ . N - N ' o -“"“-'-
udents served as subjects. The :

unselected group consisted of_nineteen volunteers from an lntrdductory
Psychology course,fwho received course credit for their participation.

These students were not selected by the experimenters; preliminary

work had shown that fhis pool of'subjectg included many poor equation .
solveis. Participation was voluntary, and three aqther students declined

to participate after the study was described to them. Data from three

more students were lost to techni@al failure. .
. \ 3

The_unsefected group varied in'mathematical background. All had -
. N N\ .

' '
kad two years of algebra in secondary school, but some had continued to

take mathematics in college and others had not, The time elapsed be-

tween- initial learning or last use and the time of this study must be

kept in mindein considering their performance in the study.” Specifi-
cally, it is likely that memory retrieval difficulties played a greater 1

L

role of this group than it might in a corresponding study with high

fhe fifteen students in the‘selected grouﬁgwere recruited as
follows. A ;crééning test (Table 2.5) was administefed go gi_studgnts
in a junior-level electrical engineering laboratory course’and 20 stu-
dent mathematics teachers. The test was given in a classroom setting,
and the students were asked to record the time they started ané f[ﬁished.
All tests were scored for number of equat{ons correctly solved,

Performance of the group ranged from &4 to 19 correct solutions and

from B to 30 minutes to complete the test. R

‘
£

The 24 students who had 16 or more correct solutions were selected

-

for telephone contact. Of these 4 could not Be contacfcd,'h declined

<
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\ . . : . : s
to participate.’and 16 served as aubjects. (ne student's data was lost
S A
due to technical, failure, - /
. N i . :
These students were paid $5.33 for a 1 1/2 hour session.

Progcedure : / _— S
. / -
All students served\individually in the EXperiment. On arrivai,
- -

each student heard a general description of the experiment and its
goals, and decided whether or not to park&cipate.

were then given, In which the student was asked to solve a series of

General instructions

"

L]

algebra equations, by Qhafevé? method the student chose while beiné
video-taped. No s?pp?ff?cat?on of answers was req;ired, and the student
was free to write down as many or as few steps of the solution as de-
sired. The student was asked to resist the temptation to be unugually

careful or clear in working on the problems and not to worry about mak-

ing mistakes. It was explained that\no'record of the student's idehtity
‘ « ,

‘would be kept;vand that the video tapes would not show the face. -The

student was free to skip or abandon an equatign at ahy time. A pen was

-

provided to brevent erasing. Questions were encouraged at any time dur-
. *
ing &he procedure.
x

The instructions also called for spoken comments during the solution
process. For the first seven equations, the student was told ''As yod
work, try to describe your prob\em-relatéd thoughts. Don't worry about

feeling foolish, but Just try to say whatever comes to mind as you work."

&

For the second seven equations the student was asked to explain the sol-

-

ution process as if to a person studying algebra who asked for help on

o

homework. Comments on how to decide what to do with an equation were

_specifically requested.
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1 _ e ‘
} The first two sets of seven cquat;ons were drawn from the set

shown in Tahlé 2,2. These weTre presented in a random order, with the

privisq-thap/éhe equat{on in each of the pairs shown in the table fall

| in‘the first seven fhh ;he ofher in the second seven. Working tims for
these f& equa&ions ranged féom';o to 30 mirutes.
" After completing the work on the first two sets, the students in

/

the Selected group were given two more sets of four equations each.

These sets were drawn from Table 2.4, with the requirement that one equa-

‘tion from each pair fall in each set. The first set ‘:ﬁglved upder the
“describe your thoughts" instruct;ons, and the sécond under the 'explain''
instructions’just as‘for'the,initial sets of seven, Working time for

~

.#these 8 equagions ranged from 15 to 30 minutes.

The Unselpcted g%oﬁp was tréated differently. The first sets of
seven equations completed the first seséion, and -they returned a week
later for the second‘écssion. In the interval their initial work was -
examined, and sets of equatiéns related to thosé on which they had made
errdrs were selected from Table 2.3, Three sets of three equations were
prepared for each student, with equations that had been little used to
that point, being used to fillf;yt the count for students who had 10t

N e ,
isade errors on three different types. These three set§ were presented
in random order, with the equations within each set alsélrandomizéd.

N

The students were asked to comment on their solutions .under the ''explain''

*

instructions as used:in the first session. In addition, the experimenter
- - . N . * h . .
Lasked for-comments on particular features of their solutions cr comments.

This second session lasted abdut 25 minutes.

-~

t
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All solutions éqd comments were recorded in the following manner.
Each equation was written at the top of a blank 3} x 11 sheet of v

paper. The student was seated at a table with this sheet placed in a
convenient position for writiﬁg. The experimenter was seafed on the
opposite sidevof the table, conteolling a video camera witg a zoom lens.
\

The camera was aimed at the area of the sheet on which the studggiégas
writing., A small TV monitor was placed on‘the table in such a way that
the experimenter could follow the written work and guide the camera by
viewing the monitor, ‘A desk lamp Qas used to fill in shadows cast by
the student's writing handy otherwise no special lighting was used. The
S:Ldent was told not to worry about blocking the camera or moving the
worksheet as the experimenter could move the camera. A microphone
placed on the table near the étudent recorded the commengs of both stu-
dent and experimenter on the video tape. Additionally, an audio cassette
recorder with a lapel microphone worn by the student was used tp capture )
the comments in a form more convenient for transcription than the video
tape. ~

Spoken comments of subject and experimenter were transcribed, with
pauses indicated by siashes timed by a metronome running at 40 beats per
minute. Numbered flags were placed on the written work for each solu-
tion 3ndi§ating the order in which lines or parts of lines Qere written,
by reference to the video recording. <Subscripts corresponding to these
flags were placed in the transcript of the comments to indicate the re-

-

lative timing of comments and written steps, Flags also were used to

show where the subject pointed when no mark was made.

“e- g ‘ . . “




Overall description of performance ‘ o . o
. 7 . )
Table 2.6 shows the performance of the subjects on the Session |

equations. The symbol "e' in the table indicates that'the subject com~

t

pleted the problem but made one or more errors in the solution. The
' [

symﬁo! "n'" indicates that the subject did not complete, the problam.

' ‘ \
A number indicates that the correct s-lution was.attained, and gives"
. ¢

the number of writtem steps in the solution, excluding false starts ard

backtracking., The steps counted were the lines showing successive

transformations of the equation, with marks added to such a line not >

[}
counted.

Subjects are designated in the teble and throughout the report by

F 4

the codes assigned them when they arrived to participate in the study

so there are gaps in the numbers for subjects whose data were lost or N
-
who declined to participate after being assigned a code, Codes start-
ing with § were assigned to the unselected solvers, and those starting
. -,

with £ to the selected solvers: the letters may be taken to stand for
. ' { .
Solver and gfpert. These subject codes will be joined with equation

numbers to identify examples discussed in the report. The designation

S1 4B would identify the work of subject S1 on equation 4B.
) _

Table 2.6 displays the subjects’ grouped according to the number of

.Session | equations they were able to solve. In Table 2.6 and in the*

grouping one error discussed\below is not counted: Equation 5B has one
as an extraneous root, but In Table 2.6, one was counted correct. This
was done to avoid placlng undue weight on correct handling of the rare
extraneous root problem in ranking the solvers. As long as any partig‘

credit Is given for one as a solution to 58, .the grouping1§hown is un-

Y

changed. oo '
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Though this En&cates th’t the difference was not consistent for equa-

-

N “‘J K] o - .
Interestingly, there was !ittle difference overall In the lengths
. . .
of solutions generated under the “'descr.ibe your thoughts'' and "explain'
instructions. Th~ average acros's equations of the average solution

length for ''describe your thoughts'' solutions to the Session 1 equa-~
b4 oug

L

tions was 3.4 steps, and for "explain'', 3.7. The "explain' solutions

were longer for § of the 14 equations and shorter for the other 5.

1

4

tion 3B, thé incrcase In length under “eXpTaiﬁ“ instructions was sig-

nificant (rank sum test, T' = 154.5 p&.001). - ‘ o
Tables 2.7 and 2,8 show the correctness of solutions for the .
Session two 'equations.. Here ‘''c'’ means correct, ''e'' error as in Table

. . ‘

2.6, and 't not ;ompletéd. The symbol ''t'' indicates a problem not

completed because of insufficient time.
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[fﬁ v+ Table 2:6 , s
\ \ ‘ ) ‘ \
Pegformance on Session | Equations
‘ -~ Top Yen Solvers
* Equation }
(//“*“ ‘ : , number
[TA 1B 2A- 2B°"3A 3B LA 4B S5A 5B 6A 6B JA. 7B correct
3 2 3 2 2 3 7 2 6 k 3 4 3 5 g T
5.2 3 3 3 3 4 2 4 4 5 4 5 304 14
8 1 b3 2 3.3 2 4 3 6 5 4 3 3 1
’ €9 2 3 4 .3.3 e 2 7 3 103 .5 3 3 13
€13 03 e 2 2 3 3 2 4 3 4 , 3 3 3 3
b2 1 43 3 5 2 6 e e 3 04 3 4 12
’E16 2 kK 4 3 4 2 6 ,6 375 3 4. 14
S8 2 3 e 2 3 3 .3 5 6 5 4 e 3 4 12
s17.72 4 5 @ 3 5 2 6 4 5 6 4 & 4 13
1992 ¢ 3 3 e 3 1 4 3 3 3 4 3 4 2
No.
- Correct 10 8 9 9 g9 g 1010 9 .9 10 9 10 10
Averagé ' ‘
No. ‘ |
, Steps 2.0 3,1 3.32.73.04,1.2.05.23.85,23,64.13.53.8
’ e - denotes error

/




S

Table 2,6 continued
Middle 14 Solvers

Equation .
/ number

1A 18 2A 2B 3A 3B LA 4B 5A 5B 6A £B- 7A 7B  correct,

-

El 2 3 4 4 3 5 2 e 4 5 & o 3 4 ¥
E2 2 3 3 4" 2 3 2 e 305 3% e 1

Eh 2 e b 2 3 3 1 7 4 e 3 e 3 4 1
E6 2 e 4 2 3 32 3 3 43 e e 3. 1

E7 2 e 3 3 3 3 2 n &k 2 3 6 e e 10
EI0 2. e 3 3 e 3 2 Lk 3 e 2 4 2 4 gfll
E1l 2 e 2 2 e 3 2 4 4 3 2 e 3 4 o
E12 27 4 3 32 e 2 e 3 4 3 e LI R
7.2 e 5 5 k 5 n e 4 e 5 5 5 § 10
S1I0 e e 4 e 3 5 2 5§ 6’ 35 3 5 1

SIS 3 05 e 3 b 2 06 3 3 e o

3 3 "
12 b e e n bk 3 e 7 6 7 3 5 4 |4 10
SI8 2 e 5 a0 e 3 2 3 3 4 3 & 4 |4 10
s23 0 b 5 0 3 4 2 e 6 6 3 5 4 10
No. ” ,
Correct 12 5 13 9 11 13 12 8 14 10 12 7 12 1
Average ‘ '
No.

Steps 2.4 3.43.83,13,03.61.94,93.94,4 3.0 5.0 3.4 4.3

e - denotes error

n - denotes not complete

- 3

)
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Table 2.6 continued )
i
Bottcm Ten Solvers .
* \
. Equation -
' . ' ‘number
) . TA*. 18 2A 2B 3A 3B LA LB SA 5B 6A 6B 7JA 7B correct
* , " S] 3 e e e 3 5 e n e e e e e 4 | 4
J ‘53 ¢ 3 n e 3 4 n e n n 4 5 3 Ly 7

L]
i
Vi

S5 n e 6 e &k L4 2 e e ‘e e e

S6 2 n 5 n 3 4 2 e

=
~N O

4 3
SI13. e e 5 n e e n 4k 4 5 3 & 1 5
SI5 e e 6 n 3 e 2 :5 5 6 L4 4 e 4

3 .
SIb e e e e e e e e e e L4 e e e ]
S20 e -e e n 4 e n e e e e e e e ]
521 ¢ n e n 3 e 2 n e n 3 4 3 .b 6
522 e e e e 3 e e e e e e e e e | ] 5

No.
torrect 2 1 4 o0 8 4 4 2 3 3 5 3 4 73

Average
No.

Steps 2.5 3.0 5.5 3.2 4.2 2.0 4.5 4.3 4,73.6 4.3 3.0 4.3

e - denotes error -

n - denotes not complete
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~

Sl

S3 -

S5

$6
57

S8
S10
S11
S12
S)3
§15
S16
*S17

S18

S19

$20
s21
522

$23

Table 2.7 .

.

‘Performance on follow-up equations
for unselected group

. Equation
10 10 TE 2¢ 2D 26 3¢ 30 3t Ac 4D A 5C 5D SE 6C 6D 6E 7C 7D JE
e n e . | € ¢ ¢ J e ¢ ¢
n C n C _n (o e C C
’ cC e e n e e n e t

cC ¢ e € ¢ C ¢ ¢ ¢
c ¢ ¢ c ¢ ¢ cC ¢ ¢
E ¢ ¢ cC ¢ ¢ cC ¢ ¢
¢ ¢ c , c ¢ c, e e ¢
Y , [
c n c t t t e e ¢
C e e ¢ e ¢ c ¢ ¢
t ¢ e . c n c c e ¢
i
* 9
A t t e e e e t t e
,‘ ]
c ¢ ¢ ¢C C ¢ cC ¢ ¢
c_ee ¢ € ¢ cC ¢ ¢
: c ¢ ¢ c ¢ ¢ c ¢ ¢
. n n n e n n n e e
et t n n n 4° n e
L) . 3 -
e e e e & ¢ e nh n :
+
C ¢ ¢ cC ¢ ¢ c ¢ e
° ‘ - N

~ denotes correct

- denotes error

- denotes not completed , ‘
- denotes insufficient time |

‘Y.

_ D : ’ i - -
ST s NN e s e e

-
L4




Performance on Session Two Equations

W

Table 2.8

for Selected Group

Al A2 Bl

El c'_' c c
. '

E2 c c ¢

£3 c c c

Eh e c e
ES e [

E6 e c c

E7 c c c

E8 c c <

&8 ¢ ¢ c.
E10 ¢ c e
E1l e ; c’
E12 e ¢ ¢
E13 ¢ e c
Bl e e c

E16 ¢ c ¢

Total
Correct 9 13 13

¢ - denotes correct
e - .denotes error

n - denotes not completed

13

13

€2

15

”i3{) .4.”"”m.mu_”

D}

[ 4]

14

D2

Tota!lgorrect

~J

AT - R N V. Y . I N
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.opé&rator,

CHAPTER 3 Py

The Bundy Model

Bﬁndy (l976) presented an out!xne of, the organlza{ton of a program

to solve equations,
model,

human performance.

Though his model s;j%ot tntended as a psycholcgucal

it nevertheless makes a convenient starting point for cons:derlng -

The ‘program operates on tree representations of equations, as in
p

Fig 3.l

N

operand relationships easily apparent.

'

This representation avoids the need for parentheses and-makes

LY

.

Figure 3.1

Tree representation of the equation §x - 3x + 1

P

&

‘ \

/\ /\

X

The trees are transformed by the application of operacérs (called axioms

by Bundy) selected from a store.

of arithmetic principles.

*:-Jf

The operators are straightforward uses
Examples appear in Fig. 3.2.

figure 3.2 .
Example Operators .

<y = v
(WV)oV — ¢ . ‘

(u+v)

U= -y

wetd + Vew

w3l

W
=
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Each operator has an;?ﬁQ pattern, which must be matched in applying the L

operator, and a new pattern, showing how tne’Bperator chan§es the tree = .
> w ;.
to which It is applied. The program has a pattern matcher which is able

to telX when an old pattern can be matched to a tree and establssh what
parts of the tree correspond to the variables in the old pattern. The
pattern matcher embodies principles like commutat}vity and associativity
e ‘of addition and multiplication. This means that operators need not be
stated in different forms to apply to trees_wnich differ simplyvin order
of addendé, for example. The pattern matcher is also able Fo call thi

J ‘ ,equation solver recursively tb determine complex matches. An example

is presented in_Fighre 3.3 below,

Cor

Several operators, typicallv, are applicable to a given equation
‘ . ¢ '

*tree. The selection of which operator should be used s governed by
simple heuristics that partition the operators into groups appropriate
to reaching specified subgoals. These subgoals break up the solution

process into phases, which can be described as follows for an equation
that inirfally has two occurrences of the unknown.

The first phase is nttractibn, which has as Its goal the rearrange-~
ment of the occurrences of the unknown in such a way that one can be elim-‘ )
inaﬁed by a further oberation. Attraction'is guided by heuristics-that
identify the smallest subtree of the eduation conté?ning the occurrences ‘ \

and that try tb reduce the number of links of the tree éonnpctfng the

“
T

occurrences. Operators that have this potential are desigrated ''helpful

‘to attraction'' in the operator store.

)

Collection is the phase in which occurrences of the unknown are

actually eliminated. To limit Qearcn,‘oniy 3ingle operators that could

B eliminate an occurrence are considered. As for attraction, attention Is
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focUséd on the smallest subtree céntéining the occurrences of the un-
known wheq'matqnes.aresougét. and operators uséfui to collection are
marked in the operator store. M ~

if more thgn two occurrences oflthe unknown are present, attrac-
‘tion and collection must be repeated, If only one is present, they can
be skippéd, and tﬁé finai phase, isolation, entered aﬁ once. The goal
of isolation is to remove any structure in which the unknown is embedded,
leaving the equation tree in solved form.

At the end of each phase a rudiﬁéntary simplification is performed.
Tﬁis is limited to the removal of zero from sums‘andyothir such routine
simplifications. No multiplication, factoring or other rearrangements

are performed. As with the phase described above, operators approprnate

for simplification are designated in the operation store.

Figure 3.3 shows an example of a solution illustrating the operation 2

of these phases.

Figure 3.3
The Bundy Program - Linear Equation
EQUATION . OPERATION PHASE
5x = 3x + | & u -lﬁ-v attraction
U, + v = w
s
5x +(-3x) =] weu +ovew N collection
. W .(u+v)
x (5 + -3) = | arithmetic done in
§ | simplificaticn

ox (2) =1 . DUy ew isolation

' umw/v for v/0 . -

+ ——
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o . ~ ) i Lo .
"Figure 3.4 shows a more complicated example taken from Bundy (1975) ~

[}

(b which the pattern-matcher calls. the equation solver recursively to

. ~
solve a quadratic equation, >
‘ Figure 3.4
The Bundy Program'- Quad?atic Equation
EQUATION?} DISCUSSION
ax? + bx + ¢ = 0 | YCollection tries the operator

- " _ 'T"//# u? + 2.U.v + vz-——éb(u+v)2

to collect the x's in ax? + bx.

Choosing u as the variable to

be matrﬁed with x, the structure

, | . containing the u's, uZ + 2.u.v
is identified, and the opergtion
changed to u? + 2.u-v —3 |

L (t+v)2 - v2. In matching

x2 + 2-x-v to ax2 + bx the pro-

gram tried to find a Q'that can

be multiplied times x2.+'2XV s0

that w-1. = 3 and w.2.v = b,

These simultaneous equations are

DA solved, givingw = a, v =b ,
' ' - 2a

So the operation performed is
ax? 4 DX ———p W [(u+v)2 - vz]

- | . which is

| s [y L (0)?]
o ' 2a 2a
a [ (x ¢ 2_)2 - (b ) 2l cmo0 -
2a 2a Isolation now proceeds, since

there is just one x.
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Figure 3.4 cqntinued '
a [(x +b 2 (E_)z] - - ’ ’
] . \2a , -
'X+b2-2_)2:-‘c_
2a 2aj a
T

W)
o
| +

VG

Thisr's the equivalent to the familiar
P
-b

"

+ Yy b2 - bac
23 ! ' [~

-
¢

The objective of‘Bundy’s program is the sqlution of the search pro-
blem presénted by the large ngmber of operators appliggple to a gjiven
qugliod, Other systems for algebréic manipulation.(Hosesy 1971) solve
.the problem by:reduéing expressions’to canonical forms that can be manip-

ulated in standard ways. Bundy argues that his heuristic approach, whicﬁ

is extended in his paper to cover elementary function symbols as well as

¥

the four arithmetic operations, may solve a wider range of problems. In
any case, since human solvers do not appear to use canonical forms, it

'seems that Bundy's use of heuristics for operator selection offers a more

- plausible point of reference foﬁ?tonsidering buman solvers,

In considering Bundy's mode! as an account of human solving, some

changes seem calied for immediately. First it seems reasonable to replace

¢
-

“~
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the'eqdation trees by the ordinar; written synsax used by the solvers,
so that operations are fqrmulatedfas'operations on strings. This makes
it mre difficult to determine th;’distance between occurrences of a
symbol, as used in the atfraction phase, but this information is never-

theless still available. As will be seen, pérentheses as used in the

§triﬁ§qiitation seem to have some effectéd%n solvers' behavior, so their
'inc1u§IonATs desireable. '

Seéond, Bundy's model is .intended to producé only correct solutions,
so that all operatioﬁs are mathematically valid, pattern-matching always
réspeéts the syntax of expressions and the actual execution of opera-
tions is always accurate. Of course, these requirements must be relaxed
in adapting the framework for a psychological model.

In relating human performance to this si%ple model we wi}l first

discuss two areas in which useful,qgreement is found: strategy, that is,

the selection of opgrators to reach the goal of solving the equation,
L. .

and errors, the ra s in which mathemétically invalid results are obtained.

We then discuss some difference between skilled and less skilled perfor-

mance that relate to the Bundy model., Finally, we turn to a discussion of

several aspects of human performance which seem to be outside the scope
of the simple model. We wish to repeat here that the Bundy model is not

intended to be a psychological model, and our discussion is not a criti-
" -

cism of it but an attempt to use Bundy's insights to clarify the patterns

in our data. 4

~

.....

-~




 CHAPTER 4
Strategy Ana%ysis

“The strateétes used by solvers. prov;des one important way of
describing observab!e differences in solving behavior. In this o
chapter we consider the strategies used hy the top ten solvers, the
middle 14 solvers and the bottom ten solvers and discuss the relat»on- i
ship of those strategies to those suggested by the Bundy mode!.

The Bundy mode! establishes priorities to guide the choice of

operations to apply to an equation, Recall that the model first

‘attempts to attract instances of the unknown, moving them together,

then to collect Instances so that only one is left, !F there is enly | )
one Instance, the mode! Isoiates the unknown, stripping off any. oper-
ations in which it is embedded
These priorities seem to agree reasonably well with thqsé of
humap solvers, though there are some differences. Table 4.1 displays

the choices made by the sclvers for each of the 4 equations in Session 1.
’

"The choices mentioned are illustrated in Table 4.2, The cholces given

are the initial choices presented by the equation in its original form,

‘kj;:d a box in Table 4.1 indicates the choice favored by the basic strategy
AS

the Bundy model. No box appears for equations 4B, 5A, and 58 because

-

thase equations have x in the numerator ‘and dehominato? of a fraction,

.

and it Fs not clear how the Bundy model would proceed in thase situations

The needed operation is to clear the frasgtion, but no operator to do this .
is iisted as useful for attraction ln Bundy's tentative 1ist, perheps “
because it does not reduce the dista between the occurrences of x in

Bundy's express!dn tree notation. jeems likely that such an operator

g
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Table 4.1
- &
Strategic choices
e Where the Bundy Mode! makes a clear choice,
A that Is Indicated by a box.
: L {
Equation ‘ Top 10 Middle 14 Bottom 10 '
and choic Solvers Solvers Solvers Al
1A ‘ , ,
Eollect p's] | 10 1 0 2)
Other 0 3 10 13 .
1B ) | <
| 6 b . 3 13
Cancel or-divide 3 5 2 - 10
Other 1 5 5 1
2A 3
7 8 b 19
Clear or combine : ,:
. fractions ° .3 5 2 10
R Other r -0 ] Sk 5
A 28 "
i , 7 10 3. 20 - '
Clear or combine .
, fractions ' 3 . 3 . 1 7 o
. . Other 0. 6 7
r .
0 ; 0 3
S N7 Multiply out 9 | 7 , 9 25
;;" Cance! or divide | ) b ] 6
— 38 ' ) | . |
| 3 0 4
- Multiply out 7. 10 9 26
Cance! or divide | 0 . ] } ‘ 2
:._... I - ’ ' ‘ .—.
| Introduce variable . 2 .0 S 2
e can R ERAEEIE _,)é; o . -
, bt oo
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Equation
and choice

4

Factor out vy
Other

by

Collect x's

'Clear fractions

Other :

5A .
Clear fractions

Simplify 5710
Othar

58
Collect by cancelling

Clear fractions
ther

6A
[Qistribute and collecf1

Other

68

Distribute and collect ]

.Distribute twice

Cancel or divide

A

Distribute and collect
lsolate x 3

Other

-

s
§4

Table 4.1 continued

Top 10
Solvers

Middle 14 ~ Bottom 10

Solvers Solvers
8 3
6 3
0 L
3 4

i 4
0 2
B 5
3 2
0 3
6 .
8 3
0 3
13 6

1 K

3 0

6 5

5 5
LR 6
"o 1
0 3

All

19
11

13
18,

29
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Tab le 4.1 con t{nued

' Equatien. Top, 10  Middle 14  Bottom 10 L . L.
and choice = . Solvers Solvers Solvers - Al
. ‘) 7’8
o Distribute, .
distribute, collect 8 12 9 29
\§ Distribute, ;
distribute, other, .
collect ya . | 0 3
Other’ ) .0 o | ! 2
‘ Table 4.2 \
- ‘ Il1lustration of strategic choices listed In .Table 4.1
1A collect p's A=p+prt-—3A = p (1+rt) ,
1B . aitract ZX-xz—-—QZx-xz = 0

cancel or divide 2x-x2—-—)2-x

2A isolate T\ _%__:‘_ 17_*;([_ _%___;_ | .
clear frgctions l;_ 1. l”__§ 7x = 21 + 3x ‘.
3 x 7
combine fractions %__ £_+ 7.__9 %_ %ﬁ_
‘ 28 As for 2A .
‘ 3A agtract 9(x+k0)-é(x+§0)-——)9(Q-ho)-5(x+40)-0
) ‘ multiply out. 9 (x+40) =5 (x+40) ——3 9x+360=5x+200 Lo m

. Cancel or divide 9 (x+40) =5 (x+40) ~——3 9=5

”nljiivtmwuyiw o ."




38

4a

ks

5A

58

6A

68

1A |

7B

attract

multiply out

cancel or divide

L.

Table 4.2 continued

M

7(4x-1) =3 (Ux=1)+4—37 (4x~1)-3 (bx-1)=4
7 (kx-) ) 3(U4x=1)+4—328x-T=]12x=3+4

7(bx=1)=3{4x~i)+4—37=3+ Tn%:ﬁ)k
introduce ya}iable 7 (bx=1)=3(4x-1)+hyTym3y+k
N

isolate
factor out vy

Collect x's

Clear fractions

clear fractions

simplify 5/10

collect by

cancelling
clear fractions
distribute and
collect

distribute and
collect

distribute twice

cancel or divide

distribute and
collect

Isolate x

distribute,

Xy+y2zm2y—3 xyw2y-~yz
xy+yzm2y—yy (x+z) = 2y

X+ 3+x 1 2x+3
__-____) n‘
X xz

X+3+x 2

= | x+3+x = x

o~ x+5 —— 5(x+5) = 10({x~=10)

5 wax=10 1 . x-10 | -

] X+51 72 x+§

/
.

2
1o w2 Sex =2

2
IoX” w23k = 2(1-x)
Xx+2(x+1) = 4 33x+2=l -

X42 (x+2 (x+2) ) mx+2—3 x+2 (Ix+4) =x+2

X+2 (x+2 (x+2) ) mx+2 ) x+2x+4x+8mx+2
X+2 (%42 (x+2) ) mx+20y x+2 (x+2) = |

x=2(x+1) = 14—y -x-201h

§
x=2(x+1) =14y x = 14+2(x+])

distribute, collect 6(x-2)-3(Q-Zx)-x-lz—-—>12x~l2-12~x-12

distribute,

distribute, other.

collect

6 (x-2) -3 (4=2x) mx= 12— x+6x-x=12+12-12

F
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should ronetheless be inc!u&éd‘for use in attraction, since it is

somitimes necessary to set up collection. In equation 5B, collection
is possible by factoring 1-x2 and dividing but it Is uncertain that
the pattern-matqher would discover this, so no favored Ehoiqg is
listed,

\ Of the 11 equations for which a choice is favored by the Bundy
strategy, the most‘common choice made was the favored one for eight
equations. Equations 3A and 3B are two of the exceptions, possibly
because the favored choice requires dealing-with repeated subexéres~
sions as a unit. Equation 3A also offe}s a ﬁbpulér'cancel!ation choice,

which is not available as such in the Bundy model. '

¥
In the other exception, equation 68, human solvers prefer to

complete the clearing of parenthesés bekgre broceeding to combine terms,
whereas the Bundy model would collect x's as it went along. In fact
the multiplying out of the parenthesized qbantitigs would be just a part
| of aﬁég)!ection_opgration‘aﬁd.wou!d not.be done séparately, It seems "
from solvers' éomments that Elearing of parentheses or multiplying out
is itself a subgoal for many‘human solvers.
' Although the Bundy model often identifies thg.mpst popular choice,
. // | tﬁere are a number of minority choices that deviate from it. C?ncelfa~
tion, already mengionedffef-equation 3A, is popular on equationé\lB and
6B. The favored.collect[on in equation 1A is apparently difficult, and :
eQen though there is no really viable a!terﬁatiQe many so!vefs did not
. | use it.  Clearing and combining fractions are important‘for'equétions'
2A and 28, evengthough they increase the numbef of occurrenées of x.

Clearing fractions is also the most pcr.lar choice for_hB, S5A, 5B, , /

where agreement with the Bundy scheme cannot be assessed. ~

T o 4 v

. . . . .
Q . ‘ A0 . .
¥ 4 b , . _ i
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‘There is some indication that better solvers diay tend to agree more

with the Bundy choices than do poorer solvers. For the eleven equations

where a choice cam be favor.:d, there is only one case, 7B, where the

bottom 10 solvers agreed with Bundy more often than the top ten, Equa-

tion 3A is asxieu Some of the lack of "agreement of the poorer solvers
comes from their having available spurious operations which lend them-

selves to deviant strategic choices.

Consist%npy of strategic choices Do solvers' strategic choices reflect
: )

a stable hierarchy of preference, ‘like that ‘in the model, so that similar

choices would be made consistently for similar equations? This que

stion

deserves more attention, but can readily be examined only for equations

2A and 2b amdng the Session | problems, since only these two of fer
clésely matched choices. As shown in Figure 4,1, there is a strong

tendency for solvers to make similar choices on the two problems.

Figure 4.1

Consistency of Strategic cholce for equation 2A & 2B

Isolate

Equation Decollect
2A '

Other

1

Equation 2B
Isolate Decollect
16 X
2 6
2 . 0«

— gt




--the ' were sometimes turned into quadratlics. As can be seen, only five

34

Quadratics As shown in Fig. 3.4, the Bundy system is able to solve
quadratic equations without any adjustment of strategy or operators,
essentially by inventing the method of completing the square for each
such equation. No solver used this method In the study. Instead,
elther of two methods which do require a strategic adjustment and
special operators were used. The commoner method is factorization,J
in which the equation Is put in the form (ax + b)(cx + d) = 0, and
then split into two equations, ax + b = 0 and cx + d = 0, which'are
then solved separately. The other method i§ use of the quadratic for-
mula, in which the equation is placed in the form ax? + bx +c = d and

the roots are obtained by use of a formula in a, b and c. Table 4.3

7 shows the frequency of use of these two methods for the Session 1

equations. C(Cases are Included whether or not the method was success~
fully completed and whether or not its use depended on an error. For

example, equations 6A and 6B are not quadratic ehuations, but by error

L3

students uysed the quadratic formula. Of the five, three were among the
top ten solvers, and two among the middle 14. Four of the five were

.

members of the more experienced screened group.

. Table 4.3 . K
Frequency of use of methods for ;olving ’
quadratic equations in Session 1
Cases . Students . . S
Factoring ' 48 26

Quadratic formula“ 7 5

/4
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e ~ Both of these methods requfreﬁﬁpecfal hand1Tng. In both, the
. equation must be put in a form with zero on one side, while normal
.strategy for 1inear equations would often result in a non-zero. con-
q?tant on the opposite side from the terms conta:n:ng x, Further, both
the splitting operation and the usq of the formula would have to be‘

specifled by special operator54

Strategy difficllties Some students appeared to have truuble select~
ing an appropriate operator to apply. ln the Bundy scheme, such di?fi-
cu!ties would reflect flaws in the control, structure that sequences the
phases of. the solution process.

Table b.k collects cases in wﬁich students isolated ons occurrence
of the Unknown when there was another ucuurrcnce that had not been
.col!eqtgdi the many cases in which‘thqy ocuurred for equation 1A,

the difficulty was probably brought on by inability to recall the

§ " correct coltection operation.

\

3

Table 4.4

Premature Isolation

¢

1A $5,56,512 A-p+prt———)p = expr or
$13,815,520 ' “p = expr : )
. 521,522,523 ) ‘ wh;re expr includes p
1B SI%5,518 , 2xmxi—3 x = expr where expr . < A
: includes X -
.. t *
;'..;__/_.s Seooe 7A 5‘5 ‘ . . R x-2.(x+f)-l#-;)x-!4-2(x+l) e o _..

¢
b
3




36
= Table 4.5 shows difflcuities assoclated with the transition g?-
tweeni;he.strategy of separafing unknown terms from constants, which is
appropriaie for 1inear equations, and the strategy ;f gathering all
terms on one side with zero on the other, which is appropriate for
quadratic equations. The moment of decision is shbwn in the fi}sf
vcase, S6 6B. The remaining cases under the ''quadratic heading are
failurgf-to set equal to zero at the appropriate moment. In thé f?rst
two, EJ?QE and S12 4B, the solvers did go on to do this. In the re-

" maining cases, S7 4B and S16 LB, the solvers did not, but instead used
invalid operat|ons to “solve” the problems So these éolQers may not
have made any strategic distinction here.

,.\\\ The cases under the headihg "1inear! are.ones in which the ‘'set
- equal to zero' stfategy was appiied to linear equations. This is not
mathematTCfl)y invalid, assu@ing it is done accuratgly, but it does
involve u;necessary steps.i_ln the first example show;, found in the
work of two solvers, setting equal to zero is followed‘by factoring,
as it might be for a quadratié. Again, this is mathematically valid,'
but of quegtlonaple value. The move might be worthwhile if it allowed
- the co}rect cqnclusibp to be drawn about the role of y: Eha{ ify.is ‘

zero than any value of x satisfies the equation. Nelthe: atudeng drew

that. Inference, though S13 did get'as far as "I'm not sure about this

right here but | think you can get y squals zero and than x plus z plus |

p two equals‘zefo” before abandoning the problem.

Table k 6 shows some more - dramatlc fallures of strategid‘rontrol v

Crmamaem e - - - [

I

In each case, an earlier arror resulted In the elimination of all

.

occurrences of the unknown from the equation. A strategy that aimed at

-

L}

L]
. .
v: -
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Quadratic

%6 68

E4 4B
S12 48
S7 48
S16 h§

Linear

S3, &A
S13

S13 28

"S13 5A

S13.78

37

- . Table 4.5

é_s
Strategy shift between !inear
and quadratic equations

X2+ lix+bm] | “I'm trying to figure out

if you can carry it further.

I don't think so. | bring

. ' the four to the other side.
I get x squared plus four
oh ah, you could bring the
one to this side so it'l]
te equal to zero." '

2x+3-x2-———)3-x2-2x ”gét the x'§ together"

-

2x4+3mx2 P x2 -2 xm3
x2 = x+3+x-—->x2-x”x;3

2
2x+3mx2 ey 2x+x2m3

Xy+yzm2y— xy+yz-2y=0 —
y(x+z~2)=0 ~

| ] ] ] |
-R_-;+;’-+—->0- ;‘+

L
b4 b4

1
Y
5x+254) Ox~100— Om5x~125
6(x-2)=3(4=-2x) = x-12—>

6x-12-1246x-x+12 = O

Y
-\1

(4}




collecting and Isolating the occurrences of the unknown should have

\ \

signaled trouble Emmedlaté}y, bQ; in all but one of these cases the
students continued tb wgrk for some further steps. In the first case,
$21 2(, it appears that the solver lost track of the left-hand side
of the equation, zero, and interpreted the purely numerical expression
'obtained when the x's were cancelled as an expression for the answer.
In the remaining cases the solver abandoned the equations *hen they
'wére simplified.  In the last case no simplification was nebded after

the elimination of p, and the solver simply proceeded to the next pro-

blem, oo / )
AN
Table 4.6

Working with no unknown

s21 2¢ 0;'-§-BX__+_;% - %_‘ 'x goes into negative
, -X

X goes into, x goes into that

—_—) s - 2 3 times minus negative two over
3 three. |'m destroying this pro-
blem | think. And just set that

____2"-_11 two over three make it two thirds,
3 and that's negative eleven over
three. | don't know how. That's
: ~what | got." stops
$20 3B 7(hx=1) & 3(bx=1)+4—y
7=3(1)+4 ——
7=3+4 No comment
7=7 '
S20 5A %5__ ;;0 —_— Comments unintelligible: —
: 5 _-lo
v w7y
25 = -100
520 1A Pu Pty jart “That's about as far as It goes."
P p ‘
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| Just as having too few unknowns leads to trouble, §o'd§;; having
too many. Table 4.7 lists cases in wbichestudents proposed solutions
¢xpréssed in rms of the unknown. As indicated in the table, in some
cases there is Jndication that the solver is dissatisfied with the spgz
ution, but the/table does not include cases in which the solver stated
clearly that :He last equation they reached did not give a solution.
. It seems likely that at least_some of.the solvers represégted in thé
table do not clearly grasp the fundamental unaﬁceptability of solution
W terms of Epé unknbwn;.they.may be influenced by the similarity in |
form betwé:;/these solutions and correct ones.

Proper handling of equatiomscontalning fractional expression re-
quires an addition to the noréal strategy that is not present in the
Bundy model. It may happen that a number or expression obtained by
normal manipulation as-a root of an equation renders the equation un-
defined when substituted for the unknbwn, because of division by zero.
Such a number or expression is AE: g‘solution of the equation, since
it does not make the sides of the'eq&at{on ¢Quél when substituted and
is called an‘extraneous root. Sé in sdlving equations contéini?g
division by_e%pressions containing the unknown, it is recessary to verify
- that any putative roots do not create this probleh. Table 5.lh‘show5“
the equations used Tn the study for which this issue arises, and the
subjects whose solutions included extraneous roots. As can be seen,
many solvers do not perform ;he needed check. They may fdeﬁtify the

goal of obtaining solutions to‘an equation with the slightly different

goal of obtaining the results of normal manipulations.




S5 I8

S13 1A

S13 2D

S13 1E

S16 SE

Si18 18

$22 1A

$23 -2B

ac-cbx-chb-1"w x

Table 4.7°

4o

Solution containing unknown

2

N'X

b~x

X % c—

x

d

M- Lol X
x

A-prt=p
2
ro.y

.

"I guess that's simple enough.
It's not really but that's the
best I can do."

""Am | supposed to get that p out
of there? | don't know.'

Comments not recorded

'"That's as far as | can go since
there's no number values for any
of these variables."

No comment
E: '"Is there a rule that you can
give me for knowing when I'm fin-

ished with the problem, or what?"

S:''0k, well there's | can't think
of any way to get rid of this x

over here so it would just have to

be..." tries other manipulations
whoch do not get rid of the other
x ''So as soon-as you get x on

one side, that's that's about it."

E:'""If | could get rid of that should

I try to, or what would you say
about that?“

S:"Yuh, that's what | try to do at
at first. Yo get rid of the x on
the one side. But | couldn't,
cculdn't see.''

"'x squared would be one half x.

I'm going to leave that as my ans-

wer''. Later: ''| had x2, but the
answer denotes x, 50 tt would have

to be half of x2

No comment

"No comment

"reaal dumb answer."

o

-
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The strategy pursued by the Bundy model is largely a direct
translation of the demands of the solving task. It is necessary to
eliminate all but one occurrence of the unknown, and It Is necessary
to Isolate the single remaining occurrance. ‘The model 's straﬁegy uses
these necessities to organize the phases of the method. In light of

)
this, it Is not surprising to find some agreement between.human per-~
formance and the behavior of the model. It is more surbrising‘to find

gfeater' greement in the performance of better so!@ers, though as noted

above this is probably due only partly to differences in strategy itself

“betiveen better and poorer solvers, since some contribution is made by

spurious operators available to-poorer solvers.
The common departures from the Bundy strategy are interesting. It
appears that clearing fractions and removal of parenthesesare important

operations. This suggests that human solvers may to some extent use a

canonical form in the solving process, a form free of fractions and

parentheses. This could also explain why repeated subexpressions were
rerely used: they-disappear when-the problem is canonicalized.

" Another departflire is in the handling of quadratics. Unlike the Bundy
model, it appears that human solve;s need at least two strategies; one
for linear and one for quadratic equatioas, with a means Qf selecting the
appropriate one.

The difftcultles students have In strategy seem broadly to be what
one would expect whén one alizws flaws In the Bundy scheme, except that
some of the flaws seem very fundamental. l; is rgmarkable that some
students continue to do algebra as‘usual after th; unknown. has vanished,

and that.others propose solutions in terms of the unknown. A lack of

kfowledge of the goal of equation solving Is lmpjjpit In such performance,

and it would be interesting to know if explicit Instfuction would help.

S -] S




v ) CHAPTER §

Analysis of Errors

The Bundy model is a model of correct performance, but it never-
thc)ess provides the basis for a theory of errors, Errors would be pro-
duced if incorrect operators were placed in the operator store, if cor-

rect operators were applied where their conditions of &pplicability are

not met, or if the actions called for by an operator were not fully or

accurate!y carried out, We present here a tabulation of the errors ex-_

hibited in the study, separated into three categorsé&. operator errors,

applicability errors, and execution errors, Within each category an

effort has been made to c¢ollect errors that share various more particular

&
characteristics.

Many errors could be assigned more than one origin. There is no
obvious way to disginguish the application of an incorrect operator from
the imperfect execution of a correct one, for example, on the basis of

an Isolated occurrence. The reader should therefore attend to the errors

‘themselves as much as to the class!flcation, treating the classification

)
as a suggestlon concerning mechanism behind the error that might be ex~

*“ plored moie fully. Also, the grouping in many cases: reveals a pattern

.

of similarities among errors that may be Tmportant in identifying mecha-

nisms,

Operato} Errors Table 5.1 shows & collection of errors which involve

) /
the deletion of elements from expressions. Thﬁimathematically valid

operatiens, which these errors apparently npproximate are subtraction from

¢

-both Zﬂdes of an equation, division of both sides, simplif!cation of quo-

¢




Table 5.1

Opé?ttor Errors

Group | Simplification of quotients
S1IC . kw +2h (k ¥
. Zkw 2:,( *w) —y 2kw + 2 (ktw)
S IE‘ X ; ax XX
2 .
St 1D 2x > X —_ x2_x
S5 - 58 1=
. ‘-x //4’
S5 5A x~10 .3
xX+5 .
S5 5D X
x T 7
S16 5E X2+ (x+3) 53
$20 5E o 3(x+3) 3
S16 5D 8x . 8 4
...’_._ _—
2+x2 2+x X
$20 5A . x-10 . =10
x+5 5 R
520 4B x#3+x _ x+3
»'x x
$20 58 - 1-x2 _, 1-x
1-x ]
520 4¢ xz+¥z+xz —_y +yz +z
520 4E 2+ bx + ab yx s bx+b
520 4E., 2x t 28 __, . .,
4 s
E4 5B (x+1) (x~)

e - ~2__7x+l'- -2
'w .

.“gss:gm.wv,.m”m.;_”vu_.;””
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S20 6C
S22 5E
S16 5B
520 60

S11 6D

$20 58
S5 6D

S5 1A

Grogp 2

$20 50

S12 4D

—— -

S20 48

. © 812 1A

Table 5.1 continued

x2+2x+!

——X Z4xt]

x2+x+3 . 2

x+3 7 X

2

1=x 2

T-x — X.

x+2(x 2)

X2 x+2
1
T “X —p =X

x+2
X+2

Py o
5

Ze&ro instead of 1

X 0
Zix 7

if numerator Is null, result is denominator

bc
-abc

/r

-—y -3

S Um :

X3 5143

1
A = =prt — -A = ~prt
p- pre—y ( ) p- p (

&+

',1~A - -rt

replace s by O when it appears as a factor of

a product

“Simplification of quotients with variants of
deletion operator replace null numerator by

. replace s by 1 when it appears as a term in a
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Table S.: continued

S15 1E .:_ﬁ_.) 0
~
‘ treat X as x
- . : <
S;) SD .X_ x
X i
5A x-10 5
Y — X=2 {
S16 58 - 2-2x2 2
2-2x T2 X 3
$21 5A x-10 2
x+5
- subtract s from terms containing it
] S$20 78 127524 x=12
S1 kA 2y
y Y
§22 5¢C (3+x)x y 2+x
14+x
perform deletion only on numerator
S5 1A prt ., rt
P P
when deleting a power from a term with a lower ,
power as a factor, subtr.ct exponents ) '
. ]
. §% 48 2% 2+3 — 2" +3
X
3 \
Group 3 deletions from both sides of an equation
$17 3¢ 2(3+x) = 4(x+3)-1——p x+3=2(x+3) -1
$20 38 T 7(bx-1) =3 (hx-1) +h——p T=3 (1) +4
$16 4E a2 + b2 + x2 = 2x + 2a
~a - X -Xx =-a
a + b2+ x =242 -
o5




520 7A

6A
S22 1B

68
48
78

$22 68
EL
E12

S5 68

Group &

S3 1A

S18 1g
S16 1A
§22 6A

S22 5D

Group 5
522 48

S16 LA

g2 78

F—y

Table §.1 continued

x2-x 2 = 14 x2 -x = -7 N

S A A

x2+3x+“§- '3-—-)?(2*370'2

xZm 2 X X2 Comment:''could | subtract

an x from these ones'

X+2 (x+2 (x+2) ) mx+2—p x+2 (x+2)=0 Comment:''subtract”

X+3+x = xz—~)3+x - X

12X _ x+12

12 12

x+2 (x4+2 (x+2) ) =x+2 —» xf2(x+2)-0

(x+2)(x2+hx+h)-x+2-——)0;x2+4x+k

Deletion from one side of equation

A
Amp +prt—> Brt =p

x (a+])mb—) x=b-a-1
Amptprt— (Ft)A = ptp
x+2 (x+])mlf —3yx+] = 4{x+2)

X X
(h+2/x)(2+-—-§) = 7—) 2/x) (-2-;; 3

Subtraction

x2 -X —3 X

2yz—y 2z
_2y

6x-}z’-}z’+6x - 12311 xm-12

s



m}“ | tienis, and subtraction, As figure 5.1 shows; all of these correct
operations do produce”deletions in common sftuation;. !nspecfién of
the errors suggests tha£ students identify these co;}ect operationsiv ..

_ with a single ge%eric deletion operation.which often produceé in-

correct results. The following is a tentative description of this

deletion operator and its use. ‘ K

\

Figure 5.1

Some legal operations producing deleticns

X+3 = b+3 —e—— 93y x = b
-3 ~a

ax = 3b —— x = b

5--+ X X+ a3 - ag—3y X

The deletion operator transforms an expression e by deleting a
specified subexpressidn s from it. If the resulting expression has
operation signs which are missing an operand because of the deletion,

€

these signs are deleted. Similagly, unnecessary parentheses are de-
Iete&. ;f s is a constant and a ;onstant k=c.s appeérs in e, the
effect of the deletion of s is to replace k by o in e. Figure 5.2
shows examples of the deletion operator in action.

—— The déletioq operaﬁiOn is used to simplify quotients when a sub-
expression s appears in the numerator and denominator, either explic-
itly or as a factor of a constant. Tte éimpliflcation proceeds by de-

leting s from the numerator and from the denominator. If the resulting

numerator and denominator are both nonnull, the result is thelr quotient.
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Figure 5.2 \ R

Examples of deletions
delet;'h frém Zgw + 2h (k+w) : 2kw +“2(kfw)
delete x from x~10 : -10 R
delete 5 from -10 : -2 . : ) .

delete x from 2+x2 P2+x

delete 2 from 2+x : x ly .

if the denominator but not the numeratér is null, the result is simply -
the numerator. If §he Bumerator is null, but not the denominator,

the numerator is replaced by 1. |If bofh numerator and denominator are
null, the result is zero. Figure 5.3 shows examples of this procéss,
which can produée the first group of errors-in Table 5.1. As Shown'in
Figure 5.4, the procedure also correctly handles some simple; examples.
Some errors call for variations of the scheme; these are indicated in

the second part of Table 5.1,

Figure 5.3

.

* Use of deletion to simplify quotient

x=-10 delete x from numerator: =10
x+5 '

, delete x from denominator:/S
& »
delete 5§ from numerator: -2
delete 5 from denominator : #

denominator is null, so result is
. numerator: - 2

« it . N -
S P S PSP S S



Figure 5.3 continued

8x delete x from numerator: 8
2+x ' ‘

delete x from denominator: 2 + x
delete 2 from numerator: &4

delete 2 from denominator: x

result: &4/x

X delete x from numerator = @
delete x from denomjnator: 2

| 1
numerator is null, so replace by |

result: 1/2
Figure 5.4

Examples for which deletion operation correctly
~.simplifies a quotient

ax (shows deletion of a and dropping of null
a > x denominator)

‘< &
X __ 1. (show§ need to feplace null numerator by 1)

W
x
w

#

The same deletion operation may be used to transform an equation,
if a subexpression s appears on both sides., The procedure is to delete
) Ny 4 ' .
3 frq“%ach side, replacing the side by 0 if it Is null. The third"
group of errors In Table 5.1 Is produéed by this procedure,\while the
fourth group calls for the indicated variatfop§.- As in the case of

simplification of quotients, this solver,does,t}ansform some equations

correctly, as in Figure 5.5.

ERETE

|
) g ;L i ‘
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Figure 5.5 . _ : _ i

Examples for which deletion Operationvcorrectly _
- simplifies an 'equation when applied to toth sides

ax = ay—yx =y
Xta=y+ta—yx+y

Another case (n whiéh deletion may be used arises when a sub-
expression s is to be removed from one side of an equation, but does

not appear on the other side. Here s can be deleted from one s bde,

but must be subtracted from or diyfde out of the other side., It is

not clear how the cholce of subtraction or division is made in such a

.

case. 4£xamples of errors which may arise in this way are shown in

the fourth group of Table 5.1. Note that the last errors in this group

involve a multiplication done on the other side rather than & subtrac-

tion or division.
| The final groﬁp of errors in Table 5.1 may résu%t from the use of
delefion to carry out an indicated sztracfioh within one side of an
equation,
Table 5.2 illustrates a constraint.on the deletion gpera#or stated
by one subject. The subject indicated that cancellation could not be

used to simplify either quotient because the entire denominator did not

appear in the numerator, : /
. ) EaN \
« Tlable 5.2 ) ;
Examples with cancellation blocked . ,' \

S5 SE 2+ (x+3) -
: 3(x+3) o

S5 SE x> + 3
6n




5’1

Another constraint is shown in Figure 5.6. Two excerpts from

the protocols of the same subjeﬁt are shown, in which thg subject
stagis that items cannot be cancelled ﬁnlcss they are multiplied.
Figure 5.6 *

Examples of Erroneous Cancellation

Cancels h's

Sl. e A o 2kw + 2h(k+w) E: "How do you know when something
h h cancels and when it doesn't like
that?"
P . L
. : S: "0k, if it's in the, if it's in

the denominator, if it's on the
' top and bottom. Then ah, and if

tiplied, if it's added you
:m§3‘m£* Like if | had a w
thére (points to second w) and a .
w down here (points to denominator)
f | couldn't cancel that w out
(points to second w) but | could

cancel that one (points to just w)”

E: ''OK"
¥
S: '"Because that's multiplied and not
added."
S1 6D x+2 (x+2) _ 2 S: ‘'Well, i¥ | treat this as one unit
x+2 . right here (points to second x+2

and puts parentheses around denom-
§ inator) | could -ancel this out
‘ ; * (points to secona x+2 and denom-
inator) because that's one unit
(polnts to second x+2) that's be-
ing multiplied by another unit
, (points to first x+2) right there.
| (Puts parentheses around first
e x+2.) Since they're all the same
N , you can do that, | guess, and then
. that would still apply to my rule,
' *  you know, you've got to be multi-
L v ' plying."
- N ' ("
o o ! ‘ \./
: * This restrictlon avoids many siniple eq’ors. )ike transforming (x+a)/a

€
to-x, but this may act7ably bg unfortunat., slnce it makes the invalidity

of the operator l;:f ?ikely to be spotted. It is interesting that this
. ﬁ' ) LY : -

“ -
¥ -
Y

A~
8
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constrained operator is quite a reasonable guess at an operator that
transforms ax/a to x but does not transform (x+a)/a to x, and illus-

=
Py

trates what might happen in learning from a few examples.

Transposition errors Table 5.3 shows some errors, all from one sub-

ject, that involwe an erroneous opération in moving elements from one

side of an equation tc another but seem not to involve the deletion

operator. In the first three examples a term is subtracted from the \

side of\the equation where it is found, thus deleting it, and is added

to the othex side. The last example, Problem 7B, follows this ﬁéttern'

in the handling of the term x, but Hot in the handling of -24.

-

S "
P

Table 5.3

Transposition errors

516 38 28X7- 11 = 12x - 3— 4Ox .= -1k
S16 68 Ix + 8 ax+2
e |
+X =X
Bx+8 = 2
516 3A 9x+360 = 5x+200——> 9x+5x = 360+200

S16 78 12x-24 = x~12—3 12x + x = 24 + -12

Recombination operations Table 5.4 shows errors involving the re-

combination of elements of two or more terms, These errors may arise
from an Interpretation of addition and multiplication in which both

represent a gencric combining operation, For example, x+x, 2x, x-x,

and xz may all be thought of as combination of two x's. Since many

different expressions are given the same interpretation in this way, it



S5
S1é
S16
S16
S1é
S16
S16
- 8§22
§22
§22

522

is possibie to rearrange the elements of an expression qulté freely

without changing its intarpretation.

5E
LA
1A
4B
SE
S5E
LE
LA
ke
LD
LE

Table 5.4

Recombination errors

2

Xx* + x + 3--)x3 + 3
-3 + 3P —-3x
Y + YZ —— 2yZ

ptp — pz ’

2x + x2—¥>3x2
x2 + (x+3) = 2x2 + 3
'x is one half of x2"

ax + bx + ab— a2+ b2 + x2

{§y + YZ —9 X+2yZ —— xZ + 2y

4

Xy + yz + XZ~——0X2YZ —_ x2 2yz

bex + acx + abx + abc —— 3 abc + 3x

ax + bx + ab——9 2a + 2b + 2x

i

-

errors in Table 5.4 can be produced.

Figure 5.7

Recombination of elements of expressions

2

Figure 5.7 shows how some of the

-

X+ X+ 3 —'"two x's'" and ''one x'' and '‘three’’

+

—— ""three x's'' and ''three"

3+ 3

¥

Yy +vyz

Ll

2yz

"two y's'' and ''one 2"

""one y'' and '‘one y' and '‘one z"

53
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Two subjects mentioned restrictions cn the possib

*

N |

le recombinations.
s .

{n rearranging ax + bx + ab as a? + b2 # x2, the subject notﬁd. ok

‘ wkﬁffyou‘re doing here is you're multiplying all three of these things

together; the a3 to the x, the b"to the x, the a to the b. So it's a

~ \

case of multiplication not a case.of addition. An x plus an x would be

an x squared instead of x + x, and a times  an a would be an a squared, ®

-

and a b times‘a b would be a b squared. But if this was a plus in here

(writés plus between b and x in originaltexpression) instead of multi-

plication then you couldn't do this." The suggestion may be that elements

which are recombined into products should have appeared in products in

the original expression,

recombination, said "l don't really know the rules.

Another subject, asked to explain a . similar

It makes it easier

if you combine everything that's the same. You have, like, the same

thing if you're working with numbers and you have 1,1,] it's just

easier to say three.'' The same subject had rearranged ax + bx + ab as

2a + 2b + 2x. Thefresponsc,was, ''No, cause here.you'ée muitiplying.

2ab is the same as 2 times a times b and here it's all addition.'"" |If

the subject means by ''here'' the rearranged expression 2a + 2b + 2x.rather

than the original expression, this may reflect the same constraint on

products described by the subject above.

The subjgct went on, '"No, it's

not anyway. It just makes it easier to keep them separate.'' In the

context of the problem, the term 2a could be cancelled at the next step,

so the subject's preference for one rearrangement over another may be

based on that.

o

Combining Fractions Table 5.5 shows errors arising in adding or multi-

plying fractiohal expressions. Most of the operators apparentiy_employed



Table 5.5

Errors in combining fractions

St 6C . | X +1 : x+x+! N ? i
T7 _3“ % ;
S15 20 (h+2/x) ) Bx(2x)+2(24x) (x2) ,
x(2+x) = | J
516 7E l _ 7 X+3 ) '
1 X V-x
S16 5D h o2 8 .
J < TV % ~ "
- : ~ )
's22 20 b, 1 b .
\ T + < —) p "
522 2¢ 1.7 (1
7 3-x* 7 3-x ‘
« S16 28 l_+ l_+ l. N 3 .
x y oz X+y+2
522 28 bool L] !
< I S R L \
X oy *Z — Xyz
S20 2A S B 10
s21 3 77

involve suboperations and patterns Qf operations that are seen in
“corrcc; operations on fractions. These elements are shown in Figure
*5.8, which also shows how they can be incorrectly assémbled to fovﬂ
operators that produce some of the errors in the Table, In one case,
a student who combined h/[ + 2/x to obtain 8/x said that the operation
involved was ?mu!tip!lcati:: of fractions'', and said that It was only
appropriate Qhen fractions were to be added. Here the entire correct

operation for multiplication is carried over for use in addition.




Figure 5.8

Elements of correct operations on fractions

a,c ; form common ad | bc y Sum of numefators _ ad+bc
. b d " denominator bd  bd - denominator bd
a ¢ , product of numerators
b T d " product of denominators

,/‘- N

Note that this is a component-wise operations: the. indicated operation
is performed separately in numerator and denominator,

How these elements nay be combined to give errors.

v X 4 X+l . sum of numerators o x+x+1
, ] 2 " product oF_denominatorsd 2
(4+2/x) X form common : h(x(2+x)) o 2(2+x) x2
\ 2+x ) denominator / x(2+x) X (24+x) x(2¢x) |-

\ combination of.numerator under Indicated operations
? denominator <

o (B (x(24x))42 (24x)) (x?)
X(2+X7.

* ) . - +
\7>~\X+3 ———3) component-wise subtraction = 7-x+3

] X

4,2 s product of numerator ,
i X product of denominator

x |o3

~q

A possible related famif§ of errors «is shown in Table 5§.6. These
may be seen as the result of inverting the component-wise addition of

fractiors seen in some examples in Table §.5.

?

Table 5.7 shows two errors from one subject which may be related

to the errors in combining fractions just discussed. In each the sub-
N‘)

ject inverts one fraction of a sum. This operation may be based on the

inversion used In the common method of dividing fractions. This inter-
. & . - , :




Table 5.6

I

Errors in decomposition of quotients

S16 50 34x? 3| +]x?) 34,

$20 5¢C 1+x 1T+ x 4

S21 5C

7E . 7-{x+3) 3> Tex+3 Comment ''negative x into neg-
1-x ’ ative x gives positive
- P xHi
. / ,
s21 2¢ -2-3x 23
= S
522 5B 1-x2 .
\. ]-x —— X

pretation, is supported by the fact that the second rearrangement was in
fact transformed to x/7, which is the product of the two fractions after
inversion. This follows the division procedure, except that the second

fraction would be the one inverted if the ﬁﬁ?h&ion a/b= c/d were used.
: \ .

- \
“Table 5.7
fnversion errors Ki .
s22 24 I R I}
X 7 X ]
1) —_— 5 X4 1
X 7 } 7

-

Cross-multiplication The correct cross-multiplication operation trans-

forms an equation of the form a/b = c/d into ad = bc. Errors Involving

this operation are shown in Table 5.8, ’lt appears that the operation is

sometimes used ,on an equation but altered to produce a fraction as a re-

,

- ) gr*
N i
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$1

51 58
S5 2C
35 2D
$§ 6L
ST 2A
S| 2A
$20 6F

58

Table 5.8

: Errors Involving cross multiplication

1 x-lb ;
2 x*5 2(x-10)
I‘Xz 2 1=-x 2
T=x ~ T“‘? 2-2x -9
22 0 T 346 - 22x - 49 |
/ 3-x ' 7
1y 1 ) fomments: says is cross
b+— N a{b+] multiplication
c ¢ , o
x+1 551)’- | . T comments: begins to cross
: . multiply and
writes 2x+2 =
before-remarking
""ean't have two-
¢ . equal signs"
.I_+.1._.___)7+x
X 7 ‘
| ) X
—_ _‘_+
x 7 7
e e L
if A

* N

sult, perhaps by analogy to other operations on pairs of fractions, and

may also be applied to a sum, difference, or product of fractions rather

than to an equation, again by analogy to other operations on pairs of

fractions. In both situations, ‘the cross-multiplication operation yields

two terms, ad and bc, which must be used toﬂ¥érm g‘b‘resalt, $0 one

-

might be used as numerator and the other as denominator as in SI 2A and

S5 2D, or they might be combined using the indicated operation on the

58
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original pair of fractions, as in S5 2C anﬁ’Ei 2A. Even when the oper- ,.Qi
ation is used correctly to transform an equation to an equation trouble

is possible if the conditions of applicatién aré too loose, as shown in

the last examplie in the table.

Errors S5 2C and S1 2A are examples of what Matz (1979b) has called
the "Lost Common Denominator Bug.'' We include them here because, as
indicated abo.z2, they could result from the adaptation of cross multi=-
plication as an cperation that combines pairs of fractions. Case S5 6C
seems to indicate this possibility quite clearly, since the solver was
using the cross multiplication operator on two fractions that were multi-
plied, and stopped when the operator generated an extra equals sign. In
the earlier case S5 2D the cross multiplication was completed.

Matz attributes this error to partial execution of tho addition of
fractions operation. OQur analysis of course does not mean that Matz is
wrong, since the same surface form can have many origins. OQur analysis
dses, however, complicate efforts to pin down the origins. Specifically,
Matz suggests that a reduced incidence of the error when adding numeri-
cal fractions would favor the partial execution explanation because the
processing load would be reduced for this simpler problem. But subjects
have probably never applied cross-multiplication to purely numeric exam-
ples, so the frequency of erroneous use of cross-multiplication would
also presumably be less,

Splitting equations with fractions Table 5.9 shows the use of an oper-

ator which Splits.an squation with fractions into an equation in which
the numerators are set equal and ore in which the denominators are set
equal. This splitting Is occasionally valid, as in the case of the equa-

tion x/(x+1) = 2/3, but in general it is not, since the two equations in

S9
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general do not have the same solution. This use of this operator ;s
discussed below, where it is argued that it reflects an eccentric view
of how equatfon“solving works, in which it assumed that a solution can
be obtained by trying to make the sides of the equation match, rather

than by the usual manipulations,

N
Table 5.9 .
Splittfng equations with fractions
S16 5A 5 _ x-10 y 5=x-10
10 x+5 " 10=x+5
SE 2x243 x| 2x243=x
: 3x+9 3 3x+9=3
X
S10 SA 5 x-10 E=x~10
10 x+5 71 0mx+5
2 .
S16 58 - 2
5 R

The reciprocal operation Table 5.10 shows errors resulting when the

reciprocal of a sum is taken improperly. In each case, the error reflects
an assumption that the function f(x) = 1/x is linear, so that 1/(a+b) =
1/a + !/b. This sort of assumption.has been noted by Matz (1979b) in
conne;tion with this and other functions, including square-root.

Nivision by zero If an equation is transfcrmed by dividing both sides

by an expression whose value is zero an inequivalent equation may result.

Neglect of this condition on division may result in losing solutions,



P
Fen N

28 | ] | ]
N ~+ L+l
X y Z X+y+2z
S5 2D 5
> has ;%T = expr but drops the 1/
getting x = expr -1. C(Corrects this to
‘——-«o
X = expr -]
S10 28 11 ] ]
511 28 R™y "z % x T Roymz=x
siz 4o 1 = -a-b C ————) X = - 1.1
X b
] ] ] ]
XT3 b T X rathc
S22 2A notes | - | + |
37477
as itlustracted in the first group of errors in Table 5.11.

division operator should carr} with it actions besides the division
itself to provide for detecting any lost roots.

would be to create two new equations rather than one: a = b produces

a/s = b/s or s = 0,

Table 5.10

Errors in forming reciprocals

The final error shown in the first group is a

Thus the

One way to do this

o oz

subtle one perhaps stemming from such an elaborated division operation.

The subject may have derived a/s = b or s = 0 from a/s = b, whence

it does not follow. This is because if division by s is indicated In

an expression, s cannot be zero if the expression is to be defined.

Group 2 of Table 5.11 shows subjects who lost roots on the equa-

tion 2x = x2’ but not by divicsion. These subjects simply noted that 2

was a root, but falled to notice the other root.
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‘~’ Table 5.11
Loss of roots
Group ! Division by zero
1B 2
E4,E6,E10 2xmx e 2=X
i efs
57,510,513 (zero is also a root)
519, .
3A, G(x+40) =5 (x+40)}—> 9=5 -
£3,E6,E9, A
E10,E11,S1% (-40 1s a root)
Vo 9 (x+40) _
S13 3A 9 (x+40) =5 (x+h0)-———’?m 1
...._..) % = |
E14 58 (Lex) (1 -x - 1 -x=0 Comment: ''cancel these,
T+x=2 1-x by 1-x. If 1-x
) is equal to zero, and
x=1, And the other
answer would be..."
Group 2 Solution by Inspection
18 IxmxZy 2umx

£7,512,5820

Splitting factored quadratic equations Table 5.12 shows two errors,

from one subj.ct, in which the operations for solving a quadratic equa-
tion by factorfing are closely follow=c. In the key step shown, hpwever,
the studenf/:ZIits the equation into two without having first placed

it in the form expr = 0. The splitting operation, as used by this sub-
ject, lacks an essential check on its application,

Square root Table 5.13 shows some errors associated solving equations

of the form xz- expr. The last two examples may simply reflect a choice

of only one root, and so may belong with/fg:~}bss of root errors just

0
-~ i Ay



. A 6L
- discussed, but they may also be related to the puzxling error of ‘the : Awﬁg
same subject on Problem 5B. '
Table §5.12
Splitting quadratic not equal to zero
s7 58 x(x=2)==2-—uy x =" ~2 Or x-2 = -2
S7 48 x(x-2)=3 — x = 3 or x-2 = 3
Table 5.13
Errors associated with square root
$19 18 2x = xz-—-$ 2mx —) 12=x comments: ''but this\is
B squared so it co be
\ plus or minu "
S16 5B x2 = 2—— answer is -]
S16 4B x2 = ]—3 x = - /
~
S16 4B Ix? = 3y x = -] : o
. B
Extraneous roots It may happen that a number or expression obtained

by normal manipulation as-a root of an equation renders the equation
undefined when substituted for the unknown, because of division by zero,
Such a number or expression Is not a solution of the equation, since it

does not make the sides of the equation equal when substituted and so is

called an extraneous root. So In solving equations involving division by

expressions containing the unknown, it is necessary to verify that any
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65
. S I '

putatiye roots do not create this problem. Table 5.14 shows the prob-
lems used in the study fér whic% this issue arises, and the subjects
whose solutions included extraneous roots. As can be seen, the falsef
assumption that the results of algebraic manipulations are always ~
solutions is widely held. Subjects may identify the goél of obtaining
sélutions to an equation with the slight]yvdiffgfent goallof obtainingk
the results of normal manipulations,

»

Table 5.14

Extranecus roots

58 » 1-x 2
= 2 extraneous root = |
E1,E5,E6 © l=x
E12,E13,E14
S6,S810,811
S12,515,S519
S10 89 (4+2/x) (Z:x C= ] extraneous root =0

Arithmetic errors ﬁgble 5.15 shows errors which seem to involve simply

. .
incorrect arithmetic on unsigned pambers.,
Table 5.15
Arithmetic errors
S165 38 "eleven minus three nine"
S21 38 7 (4x-1)—> 21x-7
S5 2 (2) -3 —65 multiplying

{
-1
™~

o
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Operator g7os = Just as invalid operators might be included in the C
operator store in the Bundy model, so might valid operators be missing.
As would be e;pected from this, some solvers seem to lack certain oper-

ators, and so have trouble when they reach a point in a solution where

such an operator is needed. Table 5.16 collects cases in which solvers

abandoned work on a problem or backtracked to an earlier point in their

solution, when a legal operator exists that would have permitted pro-

Y

gress towards solution. In these cases it Js-pfans{?!e that the solver
\ / *
lacks the needed oparator, though it is also quite possible that the

solver knows the operation and actually considered using it but decided

not to. Where this latter possibiﬁity is suggested by the solver's

comments the case is not included in the Table.

The cases in the table are grouped according to the operator that
is not used. The first group involve the inversion operator: the solver
transforms the equation to the form 1/x = expr, ;hére expr is free of x,
but cannot finish the job by putting x = 1/expr. Actually, the lack of
this operator probably is more cpmmon than these examples show, because
only cases in which tﬁ& solver found no operator to use are included.

Some subjects transformed 1/x = expr to | = expr to x = |/expr, and it
is likely that 7ome of these‘did not have the inversion operator avail- -
able. | N,

The second group of cases involve other expression: with x In the ]
denominator. Here is seems unlikely that the solvers do not possess the
needed operator, multiplying both sides by the denominator, but rather v
that they do not use It. Such?diff$cult!es could be déscribed in‘she 1

Bundy framework as improper labeling of operators: the multiplication

’ ¥
operation needed might not be marked as useful for Isolatlon or attrac-

pay _

..




Table 5,16

Operator gaps

Group ! Inversion
s6 28 -1 -yz+Rz+Ry
X Ryz
$12 28 I IR I}
X y 2z R
§21 2A 10 a1 )
21 X
523 28 I ]
X R vy CE
. //‘ N—
Group 2 Other cases with x in denominator
ST 4B 2x+3 o
7 = -
X
St 28 1 1
R x+y+z
S16 2B x o 3
R x+y+z
-2
S21 5B 1-x - 2 not attempted
' 1-x
v 4B x+3+x s
= ) \“\\} not attempted
28 L el not attempted
R x y z ;
|
Group 3 Dead ends soleing for p in A=p+prt
S3 1A A
prt
S5 1A p=prt
A s
S5 1A -p = ~A+prt
’Asg. 1A “p-= -Atprt.

67




S6 1A
S10 1A

$13° 1A

S16 1A

s21 1A

Group &4

S3 28

S15 28

Group §
S3 5A
S3 LB
S5 7A
S15 1B
S20 7A

S20 6A

S22 7A
S22 68

$20 68

TYable §.16 continued

A=p(rt)

A -prt = p

-p=prt-A

Co!!ectfﬁg terms

Xyz . Ryz , Rxz . Rxy

Rxyz Rxyz Rxyz  Rxyz
XyZz - XZp ~ Xyp = pyz

Quadratics

50x (x~20) = 6250
x2 (2x+2) = x2

xZ “x =16 = 0

(V = x2-2x

x2-x = 7
x2+x -2

3

xz-x-Z - 14

Comment :
can do to that. You
can't add them. None
of them are alike."

68

"That's a!l you

Comment: '"| don't really
see how you can reduce
that anymore."

A

x+2(x+2(§+2))-x+2—~)x¢2ﬁx+2)-0 (step spoken, not written)

x+2(x+2(x+2)) = x+42.—, ... —3 Comment: ''| can factor this

xZ+lx+l = 1

back down hut that
wouldn't 4o me much good"
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Table 5,16 continued

Group 6 Other gaps

S5 4B 2 x172 43 = | Comments: '""I''m not sure how
to get rid of a nega-
tive exponent so |
won't try.'" |

S6 18 xz-zx = 0 Unable to factor to get

: constant term zero
tion. in fact, the multiplication.needed in the firstcase in the group

is not marked useful for attraction in Bundy's tentative list of oper-
ations: perhaps human solvers have the same lack.

* Group 3 collects dead ends reached by solvers on a single problem in
which the key step is transforming p + prt to p(l+rt). As can be seen,
this step was difficult for many solvers. Some never succeeded, and
others succeeded only after considerable exploration. Two interesting
solutions are shown in Figure 5.9, As with the multiplication operation
-d{scussed'above it is doubtful how many solvers really lack this factor-
ing operation. The difficulty maywbe in perceiving that it is applicable
to a sum of terms in which one has only§one explicit factor: 1 must be
seen as an implicit factor for the ordinary inverse of distribu;ion to
be applied,

Group 4 shows a few cases in which solvers were unable to collectvﬁ
terﬁs‘ The.comments suggest that the'SOIVer may have been looking for
a common kactor of‘éll the terms, and failed to consider combining only
a subset'of the terms, as is actually needed.

Group §"§hows\qg§dratic equations abandoned by solvers. It does

not imclude czses in which factorization or use of the quadratic formula

TS




Figure 5.9
Two solutions for p in Amp+prt *t~‘
) A= p+prt -
. S:'"You want to get this p
-p = -A+prt (points to second p in
second equation) over there
(points to -p) somehow but
this A doesn't have p.in it.
what you might do is go _
- -~ ahead and leave this A OVer
’ hrll
A~p=prt writes 3rd line
) ""and you'll have prt so that .
y . way you can divide. V’No that
- still won't work."
A=p+prt rewrites original' problem ‘
; '""Oh how dumb. A = ok go ahead :
R and factor out this p here
. while it's on this side since
. they both have p's in them
A=p(rt) and You have p timés it, oh
wait a minute that's wrong'
A=p+prt rewrites original problem
"OK you want to c;ncel out
A=p(l+rt) this p so when yol do you'll
' have a one left here'' solves
ST A=p+prt f
A_p + prt S:'"1f you divide both sides by 4
o PP p p you'd get p over p leaving

A over p equal to l+rt. Then
l) A L 14rt l) dividing both sides by A',
Al p A add 1/A to both sides
, . '"would give you'one over p
I o I4rt ‘ would be equal to one plus rt
) A over A. Um, distressing, | 'm
™y going to cross multiply, would
© 0, »on p+prt=A * give you p times! plus prt,
' what | originally had, make
‘that equal to A. But this is
factored now into these two
components and if | just want
T A the p F divide by one plus rt,
divide both sides by that and

that would give p aqual to A-
. : over one plus rt.

3

4

[ %

;’
|



was unsuccessfully attempted, but only those in which there waé no
indication of a next step. A partfal exception is the last one. The
solver does apparently considéq\fif?bring, but Jecides against it be-
cause jt wogbd,simply undp the muith*Jcation jugt performed. This
~

syggests that at the vJFy least the solQ;} is missing the ''set equal
to zero'' ‘part of the procedure of solution by factorization and thag
if solution by factorization were available at all it would have been
used before multiplying out, when the equation was in factored fofm,
except for the zero. Also, factorization was not attempted by this

solver in two other cases included in the group.

Applicability errors Errors can result if a correct operation is

applied to an expression or ﬂquation.fhat does not satisfy its con-
ditions of application. This could result from faulty checking of
thése conditions, or from improperly interpreting the syntax of an
expression.or equation. fable 5.17 shows some errors that may arfse

in this, way. The first group involves treating a quantity'as if it

were parenthesized, either in a division operation or a multiplication.

Note that often a subject misanalyzed only one part of an expression

when two analogous parts were present. In the expressions shown with
2 parts, one misanalysis allows a cancellation and another forces

distribution of a binomial. Of these, the fifst is much more common,

suggesting that the error may not arise from misinterpretation of syntax

but from use of an Incorrect deletion operation, in these cases,

The second group of errors in Yable 5.17, all from a single subject,

involve the interpretation of fractions in which x appears as a factor

of the denominator. Asked to explain operations which transformed 2(1/2x)

2

EO\
: 3
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AR Table 5.17 - : -
Applicability errors
Group 1 Misi_nte.rpretation of grouping
E1.E1 » “ |
S6,S18 Xx+2 (x+2 (x+2) )mx+2—3 x+2 (x+2) =] —y x+2x+4m]
Y
S5 68 x+2 (x+2 (x+2) )= (x+2) (x2+lx+4)
S8 6B 1 x#2(x+6)—3(x+2) (x+6) ,
, $12 -x+2(x+2(x+2))-x+2——§ x+2(x2+1+x+10) - x+2
e 820 68
o~ - —— xZ+hx+im] :
S1] 6B ‘ x+2 (3x+4) = x+2—33x+4=]
S5, S6 " x+2 (x+1)—» x2+3x+2
$11,520 -
_6A
522 6A e*.f.kx+1)—-—)x2+3x + 3
S11 6C x+]1 (.’it‘.)..,"_z.té‘:i
520 \ 2 2
520 6E (3+x) 3+x —3 I+6x+x2
S5 7A x=2(x+1)—) xz—x-Z,__
522 ' /'/ \
§20 7A x-2(x+l)——)§2+x-2x-2\\«
’ s6  7C x-2(x=2(x=2)) = X2y x-2(x~2) =]l —Px~2x+4=]
S13
Group 2
‘ S5 2A 21 Ix
X T
55 8 I
3 - 1 x —x ‘k ]
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Table §5.17 éontinued

S5 2 2 (1 — X S: "not sure whether this
2x e:x stands for one half x"
S
5_ 50 % ) 2x
Group 3
s3 3¢ - ~12047 ——3 127
Group &4 4 h
EL 68 X+2x+4 = Q) xm ~2% :-(b)(b)
to x, the subject sald, ""/'m not sure whether this x stands for 1/2x

1
or whether it's one over 2x but | think that does not make a dufferencgi\

I think x applies to the whole term before it.'"" The next group of

errors in the table may arise from the application of a subtraction

operation to a part of an expression that is not a subexpression of

the expression,
- The final error in the table may result either from a misinter-
pretation of the syntax of from incomplete checkinﬁo:ﬁ}onditions

for the operator that applies the quadratic formula,

Table 5.18 shows two cases In whictrmisinterpretation of paren-

theses [s not implicit in a multiplication or division operation but

A

is made expliéit by insertion of parentheses.
Tab‘F 5.18
Errors in grouping

S5 68 x+2 (x+2 (x+2) )—9 (x+2) (x+2 (x+2))

'Sl 60 x+2 (x+2)——y (x+2) (x+2)
X+ ’ x+ . ’ ‘ |

QN

- by
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txecution errors The errors in Table 5.19 may result from incomplete

execution of correct operation. 1In each case, the possibility exists

that it results instead from the complete execution of an incorrect

operation,
Table 5.18
Partial Execution
Group 1 Distribution
S1 6A 2 (x41)—F2x+1 _
S1 68 - 2{x+2)}—9 Zx+2 , )
ST 7A" . -2 (x+1) =) -2x-1 ' | |
“ . 516 5D AT 8x ' o : ‘
. (x)(2+x}_~) 2+x% _ .
& - s16 70 - (x+1) (x-2) — -x2-2
$21 5D - 2 [ x\ 2x
: x  \2+x 24x 2
; " E6 68 x+2(x+2(x+2))——-)x+2x¥bx+b
| E14 SA 1 _ x-10 PR
3 _;Ig-._)x+5 2x-10
Group Errors in setting sfgn in transposing .
€] 48> 2x¥Fmx2—p Om x2-2x+3
£2 ' -
. ] 2 2_2 +3c
E12 48 2x+3mx ey x“-2X+3
' ‘ S12 2A ! L-]+L L.;_‘_.;.’_L
. 3 X 7 °x 3 7
S15 4A xy+9z = 2y—Ixy = 2y+yz
. . ‘ : L .
P R * R B I S R
./ ‘ . 7 3-~x 7 7 7 =X , ‘




S22 2t

$22 5A

Group 2
£E2 5B
S7 3t
Si5 5C
S18 3A

513 38

ch 58

E6 7A
£7

E10 5B

Group 3

Sié 28

$23 4t

s17 2B

75

Table 5.19 continued

4 + 7 = 0—6 ! - 7
P

"

1
X

5x + 25 = 10x - 100——5x = 10x -~ 75

In arithmetic operations or -igned quantities
2-2x-l+x2~—-)x2-2x-l

+12-1—> -1

2 o2 ‘

X -2x+3-2-~7x ~2x-1=0

bx= -160—3x=40

28x-7 » 12x-3+4—3 16x+4-4=)

2 (x+1)}—9-2x+2

In other operations

l-xz__—)(x+l)(x-l)

\\
=l 6—y x=16
2
-(x“-1) - {x+1) (x~1)
1-x x=~1

Other operations

1 3 N 1 ‘
r XFy+z ? ) o= x+§+z ?
X =3
r X+y+2z
3(8)+2(2)—14 S: "'So that would be 12 + 2

which Is 14"

]
x - %.- %.+ %ﬂ__;é_- %.+ %_- part of a series of steps

1
R to isolate x
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The first group of errors in the table involve distribution, in
which a needed product is not formed. The second group consists of
errors in which only the sign attached to a result is incorrect.
These may result from‘jncomp!ete execution of operationg in which
the determination of sign is a final step, as in multiplication of
signed quantities,

Factoring Table 5.20 shows incorrect factorizations. In each case the

factorization is ruch that at least the x? term of the product is

e e

correctly genérated. ‘n the firsi ﬁpd last examples the x term is L
also correﬁtly formed. In the fourth egaéple, both terms of the

desired product is generateéréﬂﬁrthere are unwanted x terms. Jn

view of these facts, it is possible that these errors occur thréugh
incomplete checking of the product. .If checking is regarded as part

of a complex factorization operator, these errors would arise from

incomplete execution,
Table 5.20

Errors in factoring

S13 10 2x%-x-3—32 (x+1) (x-2) \
522 5¢ 3+x2—y(3+x)x

St 1D x2-x-~9x(x-x)’

S22 5C 3+x2—3(3+x) (1+x)

E? 48 xz~2x+3———)(x-3)(x+l)

Part of the process of applying most operators is replacing part

of an equation by a transformed, usually equivalent, part. In the




-
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Bundy system, using a tree representation for expression, subexpres-
sions can be replaced directly by equivalent ones. The replacement
problem is more complicated in the lineafragiption in commoh uﬁp. The
error in Table 5.21 shows what happens when the subexpression ((x+3)/x)x,
resulting from mult}p[ying both sides of the equation by x, is replaced
by the equivalent subexpression x + 3. The rules of syntax require
thatighe replacement be enc!oséd in parentheses in this context, though

3
not in other contexts.
T

Table 5.21

Replacement

s 7E e S i i R

Some other errors which seem to reflect difficulties in actually
carrying out what might be correct operations applied appropriately,
are shown in Table 5.22. These are quite diverse, and so the table
contains comments on each. The grouping in the table sepirates errors
associated with the writing or reading process, those related to mix-

a
ing of operation, and others.

The mixing’of operations group includes two srrors arising in
clearing the denominator of one or more fractions. Note that in each
case the fraction was multiplied by the'denominator, the denominator
is eliminatgd, but the numerator is also multiplied. It is plausible
that this r%presents a mixture of the operation of clearing the denomin-

ator and the operation of multiplying numerator and denominator by the

same r mber (Richard Young, personal communication). It is not evident

A L




Table 5,22

Failures of Control

Group ! Errors related to writing or reading
S1s 7D = {(x+1) (x=2)—> (-x 1) (x~2)
— -x%-3x-2
£9 138 7(bx—l)-3(hx-l)+4~——97y-3y+1 Introducing variable for
' _ hx-1
EIl 68 XX2 (x42 (x42) ) =@ (x+2x+4 ) =0
. ] ’
S8 68 x+2 (x+2)—Ix+2+4 says '"two x'!
S22 3B 3(4x=1)+4—312-3+4 says ''twelve x!
's23 78 6 (x=2)=3(4-2x)mx=12 vy
bx~12+(-12+6x) =» -2
$3 48 2x+
’ x2 x23'—_§2x3 + 2x2
Group 2 Mixing of operations
' 2 2x+3 2 Clearing denominator and
53 48 T2 _~)2x3-~+, 2x multiplying numerator and
denominator by same quan-
ity '
S8 2A 1. l...L___) Z_..é.. 21 forming common danominator
3 7 2l 21 x and multiplying through
2
520 6C X +2x+1 1_‘_)2x2+hx+2=2 clearing denominator and
2 multiplying numerator and
denominator by same quan-
tity.
Group 3 Other
53 28 I A TN
R x Y. 2




the tép,. middle, and bottom groups of solvers. There Is a suggestion

-

Tabie 5.22 continued ‘ | ’

El B6A Ixm2—3y xm3/2
£7 78 Tixm]2—3x= 11/12
$22 2E Wxtl p 556l w6 Comment:'"multiply that
2 X (points to 2) times
//? i that (points to 3) and
add that (points to
corrected to 7 numerator) to it, so '
It would be 2 times 3
times that (points to
numerator) is bx + 6"
‘ ' "2 times 3 plus 7
. (changes 6) 2 times 3
plus 1"
522 6A C x#2(x#1)—Ix? +3x+3 N
[} //"
s8 2C 22 . 7 .1 -7 . =23

57 5B 1-2— -2

whether this mixture .nould be thought of as an incorrect operator,
possessed by a subject as a stable entity, or whether it results
from a control failure during execution of what might be separate,

more-or-less correct operators. One subject, when asked to explain

/ P

. the operation did not do so but proposed an alternate method.

Error Summary Table 5.23 shows the overall frequency of occurrence

of all the types of errors fourd, excluding the follow-up problems

for the selected group. Frequencies for the session 1 problems alore,

*

which we;n/presented to all students; are shown in Table 5.24, for

-

of a shift in the prevalence of the error types as agturacy increases, e

‘with execution errors relatively more frequent and operator errors less

.o
Iy
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Table 5,23

- Error frequencies, éxcluaing follow up
problems for selected groups

© Category

OPERATOR ERRORS

Deletion
Transposition .

Recombination

Frequency

60

12

Combining fractions: 10
Décompésj:jcn of quotients 6
!nversibh§. 2
Cross multiplication 8
Splitting equations with fractionsI 5
Reciprocals 7.
Loss of roots . /;4// 20
Splitting quadratic not equalJto zero 2
Square root 4
Arithmetic 3
APPLICABILITY ERRORS
Applicabifity - 29
Grouping" . 2
EXECUT ION ERRORS

“ Cartial execution | 30
Factoring 5
Rﬁ!}acement 1
Failures of control 4 17
TOTAL 227

80




Number of errors
accuracy of

Table 5.24

and percentage of errors by
solvers for Session |

81

Category Top 10 Middle 14 Bottom 10
Solvers Solvers Solvers
OPERATIONAL CRRORS
Deletion 5 11% 31 35%
Transposit.ion L 4%
Recombination. & 4 P4
Conbining fractions 3 3%
Decomposition of quotients ] 1%
Inversion 2 2%
Cross multiplication Lo 4%
Splitting equations I 2% 3 3%
with fractions :
Reciprocals 2 ps 2 2%
Loss of rocts 6 509 123 ° L3 3%
Splitting quadratic 2 L%
not equal to zero

Square root ] 0% 3%
Arithmetic 2 2%
TOTAL OPERATOR ERRORS 7 583 21 - 45% 62 70%.
APPLICABILITY ERRORS , -
Applicability 1 8% 8§ 17% 12 13%
Grouping \ 1 1% *
TOTAL APPLICABILITY ERRORS I 8% ‘8 7y \ 13 15%
EXECUTION ERRORS
Partial execution 1 8% 9 10%

- Factoring
Réplacement /

. Failures of control 3 25% 54LLJ% 5 6%
TOTAL EXECUTION ERRORS b 33% 18 38% 14 16;z -

N N ,

GRAND TOTALS T2 iy 89
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frequent. This is looselyconsistent with the finding of Davis and
Cooney (1977) that more. accurate solvers made relatively more errors
they called Lcomputational“. They intended by ''computational'' errors
of arithmetic, and as it can be seen, arithmetic errors are very rare
among the subjects,if sign errors are othe;wise classified. Most of
their "'computer'' errors would fall in a ''execution'' category. It is .
important to note that this observation may be due in part to artifact,
however, since any subject who was prone to an error that would be
repeatedly elicited on these particular.problems would automatically
fall among the poor solvers.

Discussion We have seen that a large number of errors can be roughly
located Lﬂ_the framework of the Bundy model. . in attempting to account -

‘e
for errors (in the framework of the Bundy model, or any other, one is

. Challengingha common intuition that errors are the result of pertur-

bations of correct performance due to inattention, random forgetting,
or other unsystematic cause. There are reasons to persevere in ana-
lysing errors.

First, some errors tend to occuf\consistently for given students:
a student who makes one error of a given type is likely to make another.
Three of the errors were made~five or more times by‘tﬁe §ame subject.
0f deletion errors, S1 had 5, ;E\TD, S16 7, $20 16 and $22 10. S16
made 6 recombination errors. S5 made 5 applfcability errors and S5 5.
Figure 5.10 compares the obtained distribution of deletion <rrors in

session 1 only, where all solvers saw th: same problems, with :he

Poisson distribution. As can be seen, the errors are clumped together.

’
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This suggests that a student has not an unsystematic tendency to make

errors, but a tendency to make errors of a particular typé.
Figure 5.10

Poisson fit to deletion error frequencies
for session |

]

Errors No of Poiéson Expected No.
Solvers ' Probability of solvers
0 | 23 .33 11,22
! 6 - .36 12,24
2 - ] .20 6.80
3 0 074 2.52
4 o .02 .68
| ™
5 ! ' .004 4
6 | 0 ,0008 .03
7 ] .0001 .00
8 2 A .0000 .00
(
mean errors per solver: 1.06

Second, some errors seem to be consistent with the so{ver's state-
ments of what should be done, indicating that it is not just the solver's
execution but also his knowlédge that is faulty. While such cases
suggest that errors can originate from faulty knowledge; two cautions
are called for‘In'interpreting them, First, they do not heip to estab-
lish the proportion of errors ihat he)e such i‘systematic origin, above

a minimum. Second, it is possible that some or even all of these state-

ments are explanations =fter the fact of what was done, rather then true




¥
N , '_‘t:f

accounts of knowledge underiying the errors. (See Nisbett ana Wilson,
1977, for a discussion of this problem in interpreting self-reports.)
So this evidence is not by itself very strong.

Third, as a perusual of the tables of errors presented above
reveals, errors are quite systematic in form. Very fgw‘grrors seem
at all like random distortions of correct performance.’/For one thing,
the same or very simildr errors appear-in the work_of different sub-
jects., For ahothér, the errors tend to reflect features of actions .
that would be apprépriate in other situations. Even if érrcrs do stem
from unsystematic pérturbations, therefore, a study of them must reveal
something about the system beiéé perturbed.

Although the Bundy model provides a rough classification of errors,

L o ’
it does not allow uy to interpret the degziled structure of the errors
in the way this last observation suggests we must, Accordingly, we
tale up this analysis in a later section, along wfth a consideration

of other aspects of behavior that call for modification and extension

of the simple model.

A"":;: ¥
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- . CHAPTER 6
Features of Skilled Performance “

Within the Bundy framework there appear to be two ways in which
performance could be improved beyond the elimination 6f errors. First,
skilled solvers may develop more powerful operators, that can produce
solutions in fewer steps. Second, the pattern-matching ability of
skilled sclvers may be better“developed, so that the skilled solver is ¢
able to see the usefulness of operators that would be passgd over by a

‘ less skilled solver. We can examine these possibilities by comparing
the solutions of more and less accurafe solvers,

If skilled ;;})ers are uginé more powerful operators, their solu-.
tions should have fgwer written steps. The number of wrlttén steps is
also inf)uenced bv pther factors, such as the number pf steps performed
mentally, but jsuch action would also be expectéd to shorten the solu-
tions of skilled solvers.

Average length of solutions As seen in Table 6.1, there is a tendency

]

for more accurate solvers to fimd shorter solutions, but this is not a
large difference and it is not consistent across problems. Figures 6.1
and 6.2 show the solutions found %y'students among the most and least
accurate solvers for two problems, ln‘figures 6.1 and 6.2, eacg phrase
separated by commas indicates a single written line. When more than one
operatfon was performed in the transition between lines, these are sep-
arated by colons. ''Isolate' is used to refer to a step that results In
'a single term containing the unknown occupying one side of the =quation
by itself. If the tSFﬁ—has a negative sjgn’this is indicated, because

it generally'requlre an additional step to change the sign. 'Dist'

?iugu: L . . 35 5?1 S . S o ‘MYW
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.Table 6.1 ’ : o i
« . »
- . Averagé Lengths of Solutions
| Top 10 . Middle 14 Bottom 10
’ Equation . Solvers Solvers . Solvers °
1A 2.0 2.4 2.5
L 3,1 3.4 3.0
’ 28 3.3 3.8 5.5 _
z(s 2 7#“ 3.1 ‘
3A 3.0 * 3.0 v 3.2
3B b1 3.6 h.2
: 7
o LA 2.0 1.9 2.0
| 48 5.2 4.9 45 |
\ ' 5A 3.8 3.9 k.3 .
. 58 5.2 ' PLR. - 4.7
6A. 3.6 3.0 - 3.6 ,
68 W1 5.0 | 4.3 | S
7A 3.5 3.4 3.0
78 3.8 4.3 R 4.3
i
L.
| -




Top Ter Solvers
£3
2 .
£8

E9

£13

El16
S17

S19

Bottom Ten Solvers

55

Sé

S13

S15

Figure 6.1

Soiutions to Problem 2A

i
3

+

L
7

x]—

isalatey invert

i;olétp, multiply by x, divide by coeff of x
_. '

-

mulviply by x, collect *erms, divide by coef? of x
multiply by 2ix, clear fractions, combine terms,
divide by coeff of x |
isolate, invert

multiply by 21x, clear fractions, combine terms,
divide by coeff of x | ‘ J'
isolate: multiply by x, distribute: multiply by 21,
c!ea; fractions, colleét terms, divide by coeff of x

isolate, add fractions, invert a ' ~
N
\/ e 1 4

) . . /
isolate -1/x, form common denominators, add, change

'

sign, multiply by x, divide by coeff of x
Isolate -1/x, add, simplify, change sign, invert
multiply by 3, multiply by x, multiply by 7, collect

»

terms, divide by coeff of x

. isolate, add, simplify:-multiply by x, simplify,

witiply by 21, divide by coeff of x

-

4

ﬁ .
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T .[L' ‘ Fiéure 6)}// K
} .- u :\& Solutions to Problem 78 <
| \\a\ : & (x-2) -}(hLZx) = x-12 | )

Top Ten Solvers

£3 ‘_ , dist 6: dist 3, dist -, simplify, transpoSe:‘

combine termé, divide by 11

T UES. dist 6: dist -3, set equal to zero: combine
S terms, transpose 12, divide by 11
. ¢ 3 dist 6: dist -3, combine terms: transpose:

transpose: comSﬁne'terms, divide by 11
ES identical to E8
E13 dist 6t dist 3 transpQse: transpose: transpose,

" combine terms: combine terms, divide by 11

E14 . dist 6: dist -3, t(anspose, combine terms, divide
g\ ‘ - by 11
E16 dist 6t dist -3, simplify,.transpose: combine

terms{/divide by 11

S8 dist 6: dist -3, simplify, transpose: combine terms,
. divide by 11
; /
S17 dist 6: dist -3, simplify, transpose: combine terms:
multiply by 1/11, simplify
! e
S19 dist 6: dist -3, simplify: transpose.24, transpose:

combine terms, divide by -~|

AL’
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! Figure 6,2 ;ohtidued
- Solutions_;o Problem 78 P
Botfom Ten Solvers
S] dist 6: dist -3, simplify, transpose: combine -
; terms: divide by 11, simplify
S3 . digf 6: dist -3, simpljf¢;ltranquse: combine . _
‘terms, divide by‘ll - | . ’\" ’
S5 dist 6: d?st‘~3, simplify, transpose, combine f
terms, divi;e by 11 | ‘
56 identical to Sﬁ ,
$13 set equal to zero, dist 6:Adist -3, simplify,
) transpose, divide by 1) |
515 _Iaentical to S3
S21 dist 6: dist -3 simplify: transpose 24, t¥ans-
pose x: combine terms, divide by 11
abbreviates '"distribute'. Figure 6.1 shows equation 2A, ihe only one
for which the difference in length of solution was significant. As can

.

be seen, the difference in length seems to be due in part to poar

choice of initial step by some of the poor solvers, partly to more fre-

L4
.

qéent use of the efficient inversion operatidn,byvthc better solveri,,
and par:!yté some combining of steps by the be}te; solvers. that weré
writ;cnpout by poorer solvers, Thet;olution of S13 is ; clear example
of the expansion of a single operation, cleariné fractions, into three=

separate multipliéations. So there is some indication of the expected

differences bétween better and poorer solver here.
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On the other hdhd, inspection of the solutions to equatien 7B in

Figure 6.2 shows that tHe’Qif%erence is not dramatic. This problem

requires a number of steps, offering scope for combining of operations,

but as can be seen the solutions .of the better solvers are for. the .

most part very similar to those for the poorer solvers. Subject ES8,

2

E9 and E13 do show more combining of opefations thap the others:, but

. ~ ' .
it is clear that this is not typical for the group of- better solvers.

1

flg may be'}hat these three_subjecfs give some indication of what solving

’ } * . . N
is like for solvers who are more proficient than those who participated

in the study. -

-

} NN e :
Use of subexpressions In many operator applications the pattern-

matcher oniyuneeds to handle simple terms: thg unknown, constants, or
products.of the unknown and constants. ~Dccésionally it is useful to-
deal wfth larger subexpressions as units, and ﬁt seems possible that
more skilled solvers mféht be better able to do this, rather thai break-
ing down the problém,intq‘smaller units.

Three problems in the inipial set were aesigned to permit the

solver to exploit the presence of repeated subexprev&ions and treat

them as units, as shown In Figure 6.3, In cquation 7B the repeated

¥
5

! 1 4
expression is not apparent in the surface form of the problem, and
identifying it requires sophlt€ticated matching. As shown in Table 6.2,
N ¢ ’ ’ ’“
there is a tendenty for the more accurate solvers to use the subexpres-~

. " .
sions more often. The table includes all cases In which the subexpres-

.sion was used, correctly or not. The commonest use in equation 3A,

~

9 (x+40) = 5 (x+40) was to cancel x +40 from both sides, which_is -in-
o~ ,‘_A

correct. The hidden feature of equéti&h,78 was used by only one sub-

£
K]
' X
» ' g

'a). “ 7/




A

-
‘ ® v Ny ‘ “ f ~
ject, E12. As with the solution lengths, we can specula}@ that there

- Y

may be: more proficient solvers than our top ten group that would use

-

such features, but it is alsorBossible that in working with simple

equations such as these the extra anaiysis is just not worthwhile.

~
-

- f . ,
These two areas of investigation, solution length and use of

repeated subexpressions, have not turned ub dramatic differences
between the most and least accurate solvers in the study. [t sgems

fair to say that within this group of solvers the more accurate solvers

-~ .

-

differ mainly in possessing correct operators, rather than in having

more powerful ones or applying them more ef?ec;ively. ‘

e

~
o7
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_, | ,
Problems
. E7 3A 9 {x+L0) =5 (x+40)
(9-5) (x+40) =0
) _ S x = =40
~ El4 38 » 7(hx-10=3 (Ux-1) +4
) C 7 (hx=1) =3 (hx=1)=b /
o * (hx-1) (7-3)=b
) \ (bx-1) ¥ = X -
- \ '/* . l‘)("] = | v )
. hx= 2 .
‘ ' X = *‘ T
: {
. E12 78 6(x‘2)-3(4~2x) = x~12
- > 6(x=2)+6(-2+x)=x-12 ’
12(x-2) =x~12 :
”} 12x-24mx-12
-~ .
’ 11x=24-2=12
- B
: \ RN
B - .
,\ A -
e ,
2 o ‘
. €

with repeated subexpressions, with sdfutiohs

~

N\
/v
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]
.
.
0
[
.




\
’

b}

.'c

-t

4
s
¢ 5 R . .
T A~ .
r
S Table 6.2 o
’ .
.  Use of repeated subexpressions in equation 3A and 3B
N ¢ Top Ten Middle Bottom -
‘ solvers 14 solvers ten splvers
N .
Y ; '
number of students i . B
using feature .o¥ i 4 l 6 2
either equation ' : ' ‘
‘ ' e
number not using
featur€ . 6 8 8 -
‘. 1 -
s
. . w3 o "
L \ ": -
t -
N [ »
‘
J‘ L .
ﬁ : \ ' L S
¢ N\ ™~
v , .
.‘;‘1 ' ¢
v \.
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S CHAPTER 7 h . -
S - HodE{UDiscrepant-Solvinq Behavior y ) ) -

E In this section we consider some aspects of subjects' perfor- -

‘ man;e that do not fit well into the framework of=the Bundy model. L
Part of the evidence to be discussed:is drawn from the structure E
of the errorsspresenfbg earlier: these suggest sqmeéhing abou; the '

organization of the knowledge subjects are using. Additional s
. - '
///evidengg gomes From“the comments and actiyities that surround solv- = !

ing itself: subjects do not simply colve, they also explore, eval-

A ’

-

uate and 'chegk.
-

&
’

. \ 4" . -
Evidence of hierarchial organization in the Bundy scheme there js

-

a singleﬁpoo{ of opetators, no operator being part of another. Stu-
dents' remarks seem to indicate that their operators are Kierarchi-

cally organized, so that some operators must be expanded into & se-
¥ . . ' ! \ a
quence of other operations when executed. For exampPe, the .operation

s

""factor'' must be expanded into a complicated:and unstandardized se~-.

quence of trial-and-error attempts. The operator “mdﬁtfply out'', as

.

applied to B}nomials, expands into a series of four simple multib]i-

cation operations, which may be written separately and may be carried

~

out in a standard order. Table 7.1 collects examp‘esNOf operators
appearing In subjects' comments ihat seem to have expansions. : e

B f\ The expansions.of operators Into parts seems indicated atso by - -~
— N . | “"/

some of the errors discussed above. In combining fractions, for example, .

3 P .
it appears that erroneous operators arise from the combimation of pieces

o~

of correct operations, The assimilation of addition and multiplication

,” to a generic combination scheme, and of diﬂﬁsion and subtraction to a 1

- ! *

o Luy B
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5 . +

s+ deletion scheme, also indlicate, that these operations are not unanal~

yzed in the s(?temﬂ However, the analysis suggested by this evidence

L C ~ : d
is not an expansion into other operations, but a more general decom-

A
A Y

position of the knéw\edge of the oﬁerétors'“sggafable parts, so that

the basic combination aspect of addi{ion may be retained while Fore

L8

Sl

specific knowledge about its action may be lost or not learned.

i
)

Table 7.1

'

o

Examples of complex operations mentioned in protocols

find th’ common denominator

\\\\\ get the x's together'
. . ’ . '

) oput all the.variables on one side and the
. .\ b numbers on another

cross multiply
multiply both sides by

. subtract _ fro. both sides

\
multiply two binfmials

I : |
multiply what's inside the parenthesis

mul &iply everything out

distribute
“ ' ) factor
G ' iavert everything
. Matz (1979b) and Brown (1379) have discussed the way in which
 § Partial information about operations, embodied as ''critics'', might be ‘
; ' -’/. = “~ ) ’
- ' ‘used by students attempting to le?rn or recall a given operation. The r
) e ’ ‘
) (1 4
o . ) 1 ‘t




Y

“critics' might biock an attempted additio; oéeration it it lacked
some'kay‘Fgature associated with addition. Robert Neches (personal
communication) Has suggésﬁe&*tﬁar the use of partial information

to constrain an operation might be a basic Eart of the memory retrie-
val process, in which the remembered précedure is bﬁilg by thg memory

wr

system to embody as many remembered feaﬁhres,as possible. Whatever
. *

‘mechanism is résponsib!e for the effect, it dqesrseeéleear that both

abstract features of an operation (deletion for subtraction or divi-
sion) and pieces of related procedures {combination of fraétions) can
influence the procedures students use. | . .3
it would be interesting to know whethgr erroneous operators are
bullt up at the time they are used, or during a learning brocess that
might precede their application. Only a few passages in the protocols”
sugyest strongfy an operation being dev{sed on the spot. These are
shewn in Table 7.2. Internal evfdence-from the %rropeous operétors
suggests, in some other cases, that the operator was created just_be-

/

fore application. These::i?xcases in which fhe operator seems to have
been shaped by the particulér goal being ;ought at the moment of appli-
cation., Table 7.3 shgwseexémples.

in the first two cases in the table, operators are devised that
have the desirable property of moving x from the‘denominator, where it
I's hard to deal with, to the numerator. Having,&ade the move shown here,
S5 went on to-use variants of it on three subsequent problems., The
third case,S5 5A, shows,adjustmé;t of the cancellatlgn operator to

avoid the problem of the vanishing unknown. The last two examples, En;

volving recombination, may not reflect construction or adjustment of




S5

20

97

. Table 7.2 S

Constructing Operations

2 - x% -x S:"1'm not sure about that one.,
2 Plus the properties are very
 x *{x-x) . confusing. So if You do x-x
thats. obviously zero. Oh wait’
a minute, . .

fhatﬁsnx times x mipus x so if x minys'x is zero it'd be
x times zero. It'd be three halves eéquals zero., Can't
do that. (pause) Well, if this won't work right here

“then I'm trying to figure out some alternative way of

doing it." :
E: "What would the rule be - suppose you could do what you
just did,- you know, putting the parentheses in 1llke that.
Is there a general rule that you're using there.that would
allow you to do that?" ' - v

S: "Um, | believe it's the associative. |'m not real
positive but | think.it is."

£: "Could you give like another example of it besides
this one that might indicate what the rule would be like?"

i

3 - (2+4)=18. S: ‘It would be like ah um, three
(3:2)¢b4 = 10 o times two. |I'm just trying to
3+(3-2) ., figure out if this one will .

work. Three times two plus
« four that!d be three times
six that ejuals eighteen. Three times two plus four no
that doesn't work. Ok, the property I'm trying to think of
| guess it just does for, {f the mode of , whatever, if it's
addition or whatever is the same, like three plus three

"minus two, that would work | think when you take the recip-

rocal of a numb~r you have to change the signs but |'m not
quite sure about that.''

Ik '| was trying-to give numerical values

3 7 to the variables but | didn't tuink about
. the equal sign when | made 6/3.equal to

-3 & -2 ,  4/2 but 2 is equal to 2. ‘But that's not

K- exactly what | want. q

1 v "I was trying to see if takir . if taking

g P X the reciprocal meant that | had to change

X ,// the sign to the opposite. Wwhat |'m

thinking of Is when ypu have an exponent
on the bottom that's negative, when you
-take the reciprocal it becomes positive.
But, I really am not thinkin too much, ™
196

L.
.{.0

? . . - ¢ . - L




. ‘ )
. Table 7.2 continued
' . | )
+ lu—-y-L = T+x “S: ““This one | can do. C(ross
/ 3 multiply”, |t, doesn't seem °
| : ‘to me like that'd be right.
3 = Ok ‘all right, :t s not right"
changes to |

3,,,7

-1
X

1
3

g* x=10 10+ 5=x-10

. . | x+5 a'o-)(‘+5

e [5mx S: '"You get & equals x.:\But x ‘
Smx . ®hould be t'y same, HaHa't.

"So I'm thinking it's messed up.

Maybe you could set the 2
equations, but they're not
equal to each other. Reduce

« . 5/10 to one half and set x
' , minus 10 equa! to one and x
. ' ‘plus five equal to five" (gets
" x=11, x==3) "You could solve’

it as a system and <3y x minus
10 equals 5, x plus § equals
10, and then subtract this
whole equation from this ode.
Maybe we should add the two
: equations.' (gets 2x-5=15,
. | , x-lO, checks) ''So that would-
' n't work either. | don't know.
I don't understand why it does
.not work out "

!

. . ~
N L
the recombingtion operator, but may simply illustrate. its flexibility.

A1l three errors in the two examples seem to be well calculated to ¢
. - . [

attain a useful end.\ The first error separates x, This is however
. e ! '

next undone to permit cahncellation of the Zyﬂterm. In the last ek-

ample the recombination chosen allows x tp bg easily Isolated. S
k
F | } -
< ” )
= ¢ ‘
&
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‘Table 7.3,

Goal directed errors

'\ 522 2A ! L | 7 4
RN o+ L ~+ L
. <3 _—_?x ‘erst‘ Fhen . ’
. ) _
changed to - ,
% ’ .’i'bl B
! / . .
e 55 24 Lo 2 TR S | ,
AR AT T :
S5 5A kel 1L
; - X7 — -
5T X - 5 2, thgn later
x=10 _ 1 ‘) oy = )
X+5 2 5 2 2 ’
522 4A XYy+yzedy ——y
x+2yzmdy——3
XZ+2ymdy——y i ,
xz=0 - ’ _
S22 4D . bex + acx +abx + abc = o,—;~> ‘ /::S
" 3abc + 3x = 0 ——3 - o ,
. 3x=-3abc ——
. ™ x=-abg¢
k] # "
: Some characteristics of Erroneous Operators As Just.discussed,
. erroneous operators might be put together using existing knowledge, '’

and then applied. Another way some erroneous opergtions’dbuld‘%rise
is by switching between correct operations in mid-execution. Thus the
student iiight not possess the incorrect operator as a stable entity,

If complex: operations were implemented by sets of productions-in a pfo- R

i
- . .

dQctIon system one could readily see how,invalfd hybr!d'cperations might -

be carried out by the system in the qyeht of loss of control Information’

’




from memory.

pending parts of expanded operators,could also-fail ins

-
[}

¥
. !

o

1u0

A stack discipline, in which a-stag} is used to hold

produce mixing,

might lend themselves to this kind of agcount (Richérd

rs

tate an analysis of operations into parts.

s 6C

$15 5D

}

. S16 TE

516 5D

522 2D
522 2¢
$16. 28
522 28
$20.24

S21

$22 2E

N\

X &
1

(4+2

7/

uch a way as to

Some of the errors in combining fr?ctions'in Table 7.4

» .

kN

" .

Table 7.

Errors in combining fractions

X+ 1 Cy Xx+]
2 7 2

X hY
L4

4

/

/

b (x (24x)+2 (24x) (x2)

/X) 24X

x+3 y 7~x+3
F4

—t

]
]

|-

Comment: ''multiply that

maybe
times
to 3)

ﬁ‘yng, personalv

communication). Such mixing of operation, if it occurs, would necessi-

~

4

(points to 2)
that .(points *
and- add that

-~

(points to numerator)
to it"”  Maybe based

on 1
a

S

\

f,

e

~
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One S/yé of msx:ng/of ooserations in correct performance i'¥ shown

in Figure 7.1. This large <step may arise as a combinatfgn of n dis-
' o8

tributions, n traispositions, and n combinations of terms. The result
) P .

was written strictly left;to-right. Although the oéeration accompTQsheé
al} the effects of the megtioned opératdons, it may or may not be a

mixture of them in the sense discussed«abQVe.v As poi;ted out, by Robert
Davis, pe;éonal communl;ation. it is possible to define qasinqle,bro— ,;

1

cedure which gives the desired effec\, and ‘the student mighf_simply be

using such a procedure  without reference to the sthaller operations. SS\‘

. - /’ é

this example, like the cases of combination of fractions, does'not¢§ i‘ K
Ll

establish that pieces of operations may be mixed during execution.
. _ \
*Jh\\ Figure 7.1 ' .
hanplex oifjatnon

E13 78 B(x=12)-3(4-2x) = x-12 -

bx+bx-x = 12€12-12 <

Ix = 12 : | ' 3 ' ‘o

12

The kinds of control mechanisms that might nroduce mixing of oper-
ations might account for other kinds of errors. The idea of partial
/o ' .
execution-presupﬁoses a control system in which it can happen that only '
part ¢ an operation is carried out. Both the production system and‘

stack discipline have this as a natural mode of failure. In a Lro-

duction system, if not all the tests that make up a condition were

- accurately checked, a production that should have awaited the completion

*

- L Lin
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by

‘of . an operation being carried out bv a set of other prodgctions might

%hey used. These doubts seem to lead: to behaviors that would be un-

s wE
4

-

apply p}ematurely. It is not necessary to assume that ‘the action of
- \ - . i

any “single produCtidn could be only partly performed.

lf a stack discipline wé;e uséd,’it would be necessary go'assume
that‘itemé‘are sometimes simﬁly lost ffom'the;stack. The prevaleﬁ%e
;f sign errors might SUQ%SSt that some pieces of og?ra jons, such\;s
sign settena, are more Iu%sgy to be .lost than others. | Horever only

some losses will shbw up as partial executions, since loss of‘really.

N 3

vital early parts Jf an opqratnon would result in nnabil:ty to perform

“c.

the later parts at aiw\ and perhaps lead to reloading of the stack. ‘.

.For human solvers Operators are apparently not units of knowledge

™~
that either are known or unknown, as they are in the Bundy model.
. - (8

Students fneqhentiyﬁexpressed-doubt about the correctness of operators

necessary in a Qélving sysfem that had only definite and ‘certain know-
fedge of its operators., First, students monitor the progresskpf their
soluglpn, making evaluations of the states ghey reach. They may‘back-
track if it appears that what they have done'h?s not leading in the”

-\‘

right direction. -

5{2

Table 7.5 collects exaﬁples showing evaluation of the situations

reached in the solution process, grouped according to the aspect of the

) . R
situation that is attended to. During the coursz of solution, the com-
. s "

plexity of the equations formed is noted, tHough it is unclear‘yhat d?ter-
mfnes'the Jjudged complexity. Also, the legality of moves is assessed:
solvers may pfan or even:icarry out moves which are tgen retracted b;-
cause they are judged not valid. . Solvers also try to avojd'returning.

-

to earlier states. hroup 3 of the table shows examples. When the solution

[}

] | - 111
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A ) ) | o
process is complete, the solution or solutions obtained are evaluated. - (' -
M may Ee thst the conclusion is that there is no solution; since this .
is rare, solvefs may use an alternate method to be safe. |If a sdfution

is obtained it may be checked, as discussed below, and if it is found
<
wanting, a new method may be used. Some solvers seem to be aware that

a——

‘a quadratic equation has two roots, though they may not be distinct,
The Table shows two cases if which failure to obtain two distinct roots
may have led_to new attempts.

Not-all backtracking is controlled by this sort of evaluation, of

course X Solvers may reach a dead end, a state to which no-appropriate

+

‘ operation can be applied. This forces backtracking. The final group jn .

..
et

the Table shows a few examples.

i

A second beﬁaﬁ{or made necessary by imperfect knowledge is checking.

<7’St”udents may check their answers or the solution procgss, and may check

K NS v
h

the process as a wholé or in part, by a variety of me thods ,

hd Methods of checking may be divided into local and global'methods.

Local methodsﬂindihate whether some particular step in 'the solution

process is correct or not; Global methods indicate whether the solution
process~ as a whole is correct. Within these categories, different methods
with different cﬁaracteri§€ics exist. Table 7.6 lists the methods used

~
by students on the fourteen first-session problems. -

Considering first the local methods, by far the most common is re-

tracing the:solution process. In this method. the solyer examines each ‘

s - !

step of the solution to see whether the intefided operation was accurately
carried out. The problem is not solved again, becauée the checking is

done by referring to the written trace of the solution. This means that

v
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&2 - yZR = Rxz + Rxy .

S15 2B e ] 1 1

vt Ix . Ix o Ix

L w |e—)
Z .

XYZXIP-XYP w | - N
pyz . ‘

Group 2 Legality;

E4 2A ¥ Z- %L + 3—) x=2 (incomplete)

ST 2A

"
x |—
+

= 7+x

|
~|—
-

. 4
A\ X _ .
Table 7.5 v / '
\ ) C . ) o \\ :
. ’-
_ ~ ey Eva{uatsons
Group 1 Cbmp!exity '
' 1) - - -
E]Q 18 - 7(Rx=1)=3(hx-1) +4 . . S:'"Well actually 1 don't b$:
et o et 4 ‘lieve that's going to hefp
JJ(A*‘T) ?( )+ Ix-1 me any. It'd complicate
/ e things more in the long run%'
§5 2A 1. .1 x.- Lo 4‘ S:'"That's not, that d
3 0x = 21 ‘L"\ look ok. ['m’gsing to do
) - it anothcr way," .
[ os12 28 LIPS t 3 - S:'I'm trying to see if | can
/ Ry z7 x teke X squared and multiply
. this (points to 1/x) by x
xd X2 _ x2 _ squared and get x'" dqgs so
Ry 7 X . "!'m not approaching it.
I''m not even coming to it.':
| N R Ve "I''m going ‘to try a‘dlffer-
Yy RTXTYVT z cgent way. | don't like that.

It's too comp1:cated r

H
-

S.”lt'jqu doesn't seem like
"~ )t simplifies anything.'

' .
-

»
»

S:' thénk | made it.more com~
plicated.' -

[

S:'"Take the x over to this
side and bring this seven
' throug Can't do that."

§:'"1t doesn' tkseem to me like
that'd be right. Ok all
rlght It's not right"
changes to

1
3

X ,
7 )
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' - . Table 7.5 continued , ’ | s

Grcup 3 - Retufp to ear}}er state

S5 68 x#2(x+1)mb—3: - — . - .
' . . Sl can't go back béQeuse .

{ ‘nxz + 3x-2=0 - | cqme up with this
: ' (points to original left
hand side) if | try to
_ N factor down soal'm just - «
. o - f o going to leave it like
: ‘ _ ' that." ' |

él} 2B yz (x-R)=Rx (z+y} ——y ,

D , M S:We're going to factor out,
yzx=y2zR = Rxz+Rxy e " " naw, that will give me

; S the tbing | started with,"

L 4

S20 6B x+2(x+2(x42) ) mx+2ey s,
N § ™~ _ -y
) 5 , 3 .
" ‘ xszx+bsf S:Y"l can factor this back
- ) ' down but that won't-do
' ' - me much dood."

7 . Group 4 ° No solution

E3 3A 9{x+40) = 5(x+40) ) S: cancels, then remarks
. _ !'9=5 doesn't exist, so
'. Similar: | 'm. going to work out
"~ £6,£9,S1! . : the problem to see what
$10,3A B | | really got."

E9 58 I-x? - {“”J . S: solves using quadrafic
) ' . , formula, gets x=i.
e - ‘ Checks. y .
: ""And the first thing you
notice is that when you "
plug in one for x up here
you're dividing by zero.
So there is no solution."
5. - /// : Then solves by cancelling.
S —— ' o . You notice that there's -
i | “ : again no solution: All -
__( 4 o . right." ’ o -

D




Group 5

Elh 5B ..

-

L 4

S11 18

Group &

E7 4B

-

Number of roots

x L, Q)
W=xy .

1=-x p'

PAS

Dead ends

x2-2x+3=0

-

'x2+3x-2-0

s

{

Table 7.5 continued

~on
.~

.

‘4
S:"Cancel these 1+x by 1-x
if 1-x is equal to zero -
and x equal to one. And
the other answer would be

i+x Is"equal to 2.

to 2 minus one would be

also one.

can't say that that's equal

Therefore no we

to zero because ‘that's
(points to 2 on right hand
-side of equation with can-

cellation) not zero. Ok
that's a good question."

Solves by multiplying by
1-x, obtaining (x-1)%4=0.

"ok that?!

s the reason we

got 2 answers x=| bp&g;e
because we have x=1 have
as an. answer for Qoth of.

them.

o Sy belfeve l-can divide by

X. Let's try that" checks
both negative @nd positiye

2 as sol

ution. '"'So it's

positive 2 only | guess.
Another way, can | solve
this another way?'" forms
x¢ -x=»0, solves, finds -
both roots. ''That's cor-
*rect.' Crosses out 2=x,

A TG

S:Equation obtained by an

error.
seam to

"This one.doesn't
factor very well,

That's why, | made a mis-

take.,'

similar

corrects

x equal

-

0
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' ¢ Table 7.5 continued
St 5A 1 2 x-10 . . x+5 S:'"l know what | can do |
2 x¥5 7 2{x-10) & - . think, Multiply, cross
‘ multiply.'t
2 2 ‘ |
~ Sl SB "'x = 2 l"X‘
=" T T 2%
§20 4B 51955. = |— 1;3 = | é:“Broke down the equation
X but ah its not going to °
equal. [I.think I'm going
, to have to skip that one."
- ' j
520 1A Amp+prt —3 «. —3y-l=rt -+ S:Solve for p :
' ‘ . ’ ‘ . "That's about as far as
' . T it goes."

14

there is dangﬁr that an error made in the solution may be repeated.

&L
)

during checking, eitfer because of a stable conceptual error or because
.of some temporary lapse. Excerpt E8 1A in Table 7.7 shows one student's

handling of this second difficulty.

-

’
/

There are a few cases, collected in the next category in Table 7.5,
in which only a single step of the solution process itﬁﬁheckedxby re-
tracing. This was'dpne three times to check the product of bino&ials,
once to check cléarinz of dehominator, and once to check conversion of
a fraction to a new denominator.

A local me;hpd which has the advantage that it could detect even
stab}é conceptual errors is checking'a step by carry[ﬁg out the inversé

- operation of the step. Thigﬁwas seen seven times, each time to check
factorization by mu1tiplying the factors. The methdd could‘be.aﬁbiieq
g .

to other operations, such as simpllfication of quotients by cdhce!ling,

using multiplfcation of numerator and denominator by the same quant}ty

i . :




k4 Local Methogs

Y

. /”“\\\fetrgge solution

Retrace single
step .

Perform inverse
operation

" Numerical
Substitution

invalid Variant
i

Analogous Problem

GLobal me thods

Substitute Answer

| Consistency

83 2A S3 78

Table 7.6 . :}‘ /
‘Method Checking N ]
! Number Number ofﬁ"
Cases of cases students’
E8 1A E9 78 E9 6B 23 ' 7
E8. 7A E9 1A . El4 2B : -
E8 ‘6B E9 - 4B “E16 78 :

ES 2A £E9 G5A S3  6A A

E8 GA E9 LA S3 38 .
E8 3A E9 7A S5 7B

E8 L4A . E9 2B S17 78

E9 6A E9 3B

£16 24 $3 7JA S5 6B 5 3
k ‘
E5 58  S11.658  S13 2B 7 5

El6 5B S11.4B
S1 1A S13 6B -

' .85 SA ' ! ]
™~
S5 68 ' 1 1 -
S5 68 - ' " I
€3 5B  EI6 4B S17 6A 34 e 4

E3 3A EI6 2A  SI7 5A
E3 38 E16 1B S18 5A
E3 68 S3 18 S23 1B
E3 4B S5 7A  S23 7B

- E3  5A S8 7A , S23 5B , ?

€5 48 _S10 5A  S23 3B
E8 48 S11 1B 523°2A
E§8 4B  S17.58 523 7A
E11 68  S17 4B 523 6A
E12 54  S17 2A  $23 5A

E16 5B , 1 | ;
s 24 siz1A s1328 b Y
10 5A . | -
B 117» '
- /
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} b ‘ 'Table 7;7 ' " : | “i | C

‘ .
Protocol excerpts on checking : E

E8 1A -, Student checks at.end of series of problems.

E: "Do you haveé a particular reason for
checking at the end of the whole series

rather than checking each one as you go along?"
S: "Yes, I'm not as’likely to make the exact
same mistake twice: After you've done some-
thing one time it tends ,to fix in my mind and
if | try to check it im&ediaté!y I'mdiable

to just do it over-again.'

S5 7A x2 -x-16m0——ax-16=0 S:"l don't know whether |
' « —x = 16 should do this. Mgetvme
try this.'" subsYitutes
16 in original equation.
‘Definitely not."

4

T S:"i'm trying to think if |
can cross multiply to find
: . the answer or invert the
} fraction. See 1f that
would be the answer. |
don't remember if that
works or not. It's been
a long time since |'ve had -
algebra, so God, | don't
know what to do. Um, if
I cross multiply 1'd have.
21/4 for x and that let's
see, 4 21st and 3 7 2lsts
and that's the answer so
that's what 1'd do."

[

S5 2A

I\f
lw

x|

] —
+
~3] —
»
[}
(VS x|—
4+
»

|
;.I_.

f
]

ror
x| .

.

>

]
“four 21 is equal to x.
That's not, that doesn't
look, Ok I'm;going.to do
it another way'' does so

o«

1l

Vo

g
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cross multiplies

S:'"But it's exactly thd' -~ :
opposite of what | did e
over here. | must have
done ;omething-goofy.“

rechecks cross multiplication T

"This js strange. If |

worked it two ways | should

come out with the same ans-

wer considering al™ I.did

was switch to the other . 1

side of the equal sign. |

must have made. Oh | see

what | did.” (Points to 1x
}

| made it x over one. No,

~that is correct."

: ""I'm trying to get the same thing up there
to see if | did it right or not."

gets agreement

"0k, | suppose that could be the answer
There s too many variables. You can't
work It out."

Checks answer by substitution, get 0 = 0.

: "Um that still looks a little awkward. Normally

you don't come out with zero is equal to zero.

So I'm going to select a number, let's say 20,

and put it in and see if any other number will

come but other than ~40.'' substitutes ''And |

have 60 times 9 is 540 and this is 60 times 5

" is 300 which Is not the same, so ah basically
looking at it | would say that -hO is the

and only solution." ’/f

: Let's see }'m just checking over this. It doesm't

I'm looking for s quick solution like couid |
divide 12 straight through. Well | couldn't

because there is an x there., And what |'m looking

for is sometimes these problems are made where
you're looking for a simple way to get some
-factor out so I'm just seelng Ifimaybe | made -
a mistake, That's‘a quick way for me to catch
an error.' L
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Table 7.7 ccntinuéd
S

S17 68 . S: "There's no fraction so | don't see why to
check it, and I'm beginn'ng to feel,a little
bst more conf:dent "

S17 4B S "No we need to go back and check Qn cause we
haye a fraction here,'” -

] .
. . ~

‘ 'ff’SZS 78 $: ""And | probably wouldn't even go back and put .
' e , it in because it came out ev:n and it's too
' ‘ : much trouble with all those numbers.!

.

4

4

~as the inverse. The requirements are that an inverse exist, that
it be known by the student to be the inverse, and that the student
be able to perform t inverse operation accurately.
A more generally useful method, ghat could be used to check all
steps that replace an expression by an eguivalent expression, is trial
. evaluation. If expr is to be réplaccd by‘dxpr', then all unknowns
’and literal constdts in expé and expr' are assigned numerical values.
The expressions are®then evaluated, and if expr and expr' are equiva-
' )
) lent the values obtained must be the same. The method is only of

heuristic value, since it may happen that the values obtained are the

same:even when expr and expr' are not equivalent. One student verified

that x/x could be simplified to x b%\finding that 1/1 is 1, But prudent

<hoice of numerical values, and the use of more than one assignment in

i especially doubtful cases, can make the method quite reliable. As

shown 'n the table, this method was used only once In session |. ,//”'

The same solver used an invalid variant of this method in ane other

&

case. To check whether a factor could be cancelled from the two sides

.
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of an. equation the student set up the '"equation' 1= (1) (4), and then

. ! i

‘ . L
<ancelled the !'s. Since the origirfal ''equation' is not valid it is

.hard Eo see how the canéglltion can be checked.

-

The same solver used one more local method to investigate the )
. same cancellation operation. This time a simpler problem of ;hé same
form as the problem being atftempted was created, and the doubtful step e

O . . -

attempted on that pro&‘km: the original problem was.x+2-x+2(x2+hx+4),

. the doubtful step being cancellation of x + 2, and the analogous pro-
blem was a = (a) (b+c+d). In this case the analog was not a useful
chect for two reasons: first, the student was no more confident of

the correctness of tne step as applied to the simpler problem and

1
Y
L ]

second, thé.anaiogous‘prdbiem is’ not really analogous, since it embodies
a false interpretation‘bf the grouping of terms in the original.
Tur: ng to global methods, the commonest method of all is checking

by subst .ing the answer into the ori§1nal equation and seeing whether

it reduces to an identity. This and other qglobal metheds have the draw-

— -

back that they p}ovidc no information about what step in the solution pro-
cess is faulty, if the anﬁwer'doeﬁ not satisfy thc eqdatyon. Comhonly, g
~ when subst{tution indicates the presence of an.error,‘tﬁe student retraces
- »° . the solution process hopi;g Eo spot a mistake. As noted above, retracing
can_fail because’ of a stable error, so ft may be neéessary.;o attempt an
- B : alternate so!utlo‘n_ method rather tﬁaﬁ patching up the original solvution.
, o ‘iln-two cases, S5 7A'and §23 2A, students apﬁear%: to use sub§ti§ution
' checking as a local cheqk:' There was just one step they were doubtful of,
which they checked by obtaininyg an an;wer and substituting. Excerpts from
these protocols are included in Table 7.7.

, _
‘The only other global method used is consistency checking. Here the

T student compares the results of two different solution methods which should =

1 ’ .
.
N v . . . .. § ot
\
. . R . B . . « - PN [P e
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agree. The'pﬁntocoi S8 ?A,,excerpted in Table 7.7, ilJustrages the diffi-

culty of using a global method to find an error, 'The studént locates the
Eﬁcorfect step in one of two.confficting soiutions, but is confident

it is correct. .

N
" The other three cases of the use of this method also deserve $pecial

comment. In one, S13 2B, the solver had started and evéntualiy abandoned

one line of work.” A second ljine was a)so'bogging down. Before abandoning

the problem the student checked for errors in either line by work;ng f rom

the end of- the second l:ne of work to obtakn the equation reach;d at the e

L4

end of* the first line. This protocol is éxcerpted in Table 7.7. In S10 BA

the two a!ternate solution methods begin from the two equattons obtanned b/
‘ \
spiittiqg an equatioh of the form a/b = c/d Tnto a=c and b=d. Havcng>ob-

taining a solution to the numerator equation the student solved the denom- -

. ,
inator equation, and, since the 'solutiop was different, realized tkat an

error had been made. That the error arose in the splitting process was not

realized. . In case S12 1A, discussed more fully beJow, the student solved

the equation, which ;ontafned literal constants, by solving an analogous

equation with only numeric constants and then .decomposing the numeric quan-

\
.

tity .obtained as a solution into an expression in the original literal terms.

Rather than check this solution by substitution, which wou]d have entaijled

the mancpulataon of literals that were avoided in the. solutlon, ‘a check was |

attempted by repeating the solution process using a dlfferent assignment B

of numerical constants. Unfortqnately; an error in the second solution led
¢ . ! A .
to reJectlnq of the answer obtained earller, which was in fact correct.

-~

As mentloncd above, methods differ in the type of error they can
detect. Since the type of error dsfferent solvers are likely to make

differ, different methods will be appropriate for different solvers.

-

o Ay ) : . At
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Specifically, one would expect better solvers to have leﬁs need to

retracing would be more useful for good solvers-than for poor ones,
though a method 1

stable and unstable errors’ would be'better for both groups.

ike substitution of answers which catches both *

Al

\

check for stable conceptual errors, while this would be crucial for

14

" solvers with many conceptual confusions. Accordingly, a method 1ike

Table 7.8 shows the frequency of use of the various checking’ ¢

. : y
methods broken down according to the accuracy of the solversfi As ‘can

i

be seen, checking is much more common among better solvers, especially

ing is considered,

Method

Local
—rre——
retrace

retrace'part
inverse

trial evatuvation
invalid variant
analoq

Global
subsﬁitution

consistency °

ef

. when number of cases of checking rather than number of students check-

Table 7.8
Checking and Accuracy
Top 10 - Middle 14 Bottom 10
Solvers . Solvers Solvers
cases solvers cases solvers cases  solvers
20 5 0 0 3 2
] i 0 Q 4 2
2 2 2 ] 3 2
0 0 0 0 1 N
0 0 0 0 | ]
0 0 0 0 ] ]
19 6 13 6., 2 2
0 0 2 2 2 2.
42 8/10 ¥ 7/14 17 4/10,
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.usually come out with 0 = 0, so the student considers the possibility

An aragument could be made that trial! evaluation would be. the method

W

of choice for péor solvers. Like substitution, it can detect stable
co:%ep;ual errors of the sort poor solvers confront, but unlike substi- .
tution ft can be used to test a single suspect step and’so avoids the
problem of determining :here in an entire solution things went wrang.
As.can be seen, this de;irable method is virtually unpsed. =
The initiation of ghacking can apparently be'coﬁtrolléd in varidus
ways. Some students ;ppear to check as a general bolicy; while others
Qill check only wheo.they have some reason to be doubtful about some
step they‘have taken or some unexpected feature of tﬁe_answer. 8ome .

excerpts from protocols that bear on this question appear in Table 7.7.

A R
Case E3 3A shows a check within a check: checking by substitution doesn't

that the egquation might'be satisfied by any value, which would render

the check by substitution trivial. In case S!7 7B the solver expeéted

that the solution Qould involve some trick and since none was found an

error is suspecfed. The two cases S17 6B and S17 4B indicate that the

soive; regards problems with fractions as especially needing checking.

It is not clear whether this is because of their difficulty or whether

the specific problem of extraneous roots is behind this idea. This solver

dié detsct an extraneous‘root, and so was aware of'the.problem. Finally,

case $23 7B indicates that check{ng will'nog always be done even wheﬁ

it might be desirable. “ “ , / |
Another diffc%ence one might expect to find between human solvers

and the Bundy model arises from the fact that equations have no meaningy

for the model. The model incorporates no knowledge about algebra tha;
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.cdnnects aléebra to any cher ddmain of kﬁowledge. Géeeno (1976)
has a;gued'that such connections are an ihgredien; of what we call
&nderstanding,-and play a role in learning, recallk.ande;ransfer.

As shown in Figure 7.2, thére;are two domains in which the equa-
tibns manipulated in élggbra can be asgkgned meaning. Expressioné
and equations represent numbers, functions, and re}ationshiég among' :
these, Thgse entities, in turn, are often used to represent‘physical
q&antities énd‘thelr relgfionships, or other relationships between
quantities inf the world, such as the relationship'between discounts and
prices. Havidg an inlérpretacion for the objects being manipulated can
be useful in ;ﬁeckiné results obtained. No physical or‘other practical
interpretation was supplied in the present study, and'thgrg were no re-
ference§ by solvers. to any interpretation of‘that kind.

™

Figure 7.2

e
! Domains for interpreting equations
N v \ .
Symbolic domain ' equations, expressions ,
Mathematical . aumbers, functions
: domain S relationships among thése
Voo S
L y

- ‘,

The real world physical processes and other

. quantitative relationships -
R \ ° - N
b ’ .
The mathematical domain a}so provides potentially useful inter- ' K

pretations for equations and their parts. Expressions represent functions,
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and equivalent expressions are just those that represent equivalent

[

i
functions (Note that ''a+b-a'' and ''b' represent equivalent functions in

the sense needed here, but not. identical functions, since the first

function'éas ;ﬁ extra varjable.) Since equivalent functions have "the
same value for corresponding arguments, it is possible to test the
equivalence o% expressions by evaluation! this is just the trial evalua-
tion method descyibea above, which was used, by one‘sﬁudent. This check
is semantic in thgt_it implicitly used the correspondehce of expressions

(w3

and functions. It is questionable that there was any explicit knowledge
of this semantic relét;On, however, since this student tried to use the
method inappgopriately at least one other ;iﬁe, in a way that violated
the necessary correspondence between expfessiqn ;nd intergretation.

There is not much indicati?n, then, that meaniné plays a large role
in equation solving. That does not suggest that it could not do so,
however. One might hope that the prevalence of ridiculously invalid
operations could be reduced if ftudents knew enough absﬁt the meaning
of equations and expressions to agsess the correctness of their actions.
We return to this point in thé discussfon.

As a final point of departure from tHe Bunéy model, we present
some non-standard ways to solve eqhations. These serve as reminders
that people, unlike.thé Bundy mode!, are not specially adapted to alge-
bra, so one can expect invented metﬂods to appear here as they. do glse-
where in mathematics (see Resnick; 1979) .

The ordinary way to solve an equation is to transform it’fnto an

. .

equivalent equation or set of equations which is in the form x = expr,

with expr free of x. This is the methpggdsed by the Bundy system. Tweo
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other methods appeared in the study;.hog&vgr. These mgthods avoided
e transforming the equation.
0, * \»,

.. | , One of these ﬁethods occurred only'in the single example shown
A“ “ o '-/7 c

in Figure 7.3. The student had attempted to solwe the equations in
‘the normal way by‘transformf'ng it, but had troc?btle with the formal .
. ' manipulations required? So he transformed the problem to an analogous NS

one with numeric coefficients. This could be transformed using arith- e

. ’ , 4 N . :
metic instead-of some of the formal operations, and solved. Then the

o , solutionége the original equation could be formed by tracing the solu-
| tion of the ‘numeric version.
L T
Figure 7.3 ' A
.-. ‘
Solving a numerical version of é\brpblem“ | ”
e S12 1A A=p+prt - restarting after ' ' ®
’ . abandoning 1-A = -rt ,
. . A=-3 ' .
r= 2
b
t=3 /
3-x+x(2) (5)
3mx+10x
) 11X . '
- -3 ‘ :
. O
- ' . A ' .
' P = Ttei )
.’;—.‘A—-&v~ - & —
s L :
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The other method was used more often, but its use is obvious only o #
: oy : \ - . TR

. .a

on problems for wﬁjch‘it leads to errors, since on. many problems it. Do
~ looks. like solution by inspection. The mgthod requires the assumption .

I n » . » L -
that a solution of an equation will, when substituted into the equa-
o S ’

& tion, make the two sides of.the gquatioﬁ look the same.. Thus 2 is a

.
.\5 N

© " solution of 2x = jf, because 2-2 looks the same as 2-2. Zero wodldJnot

-

ol

EEEY be a solution, of perhaps not as good a solution, because 2-0 and 0-0

~do not look the §am¢; The method becomes distinctive when applied to/

equations involving fractions. Examples are shown in Table 7.9. As,

L)
can be seen, the equation'is\split into th equacions, one gf which )
will when splved make the numerators the same, and the other of which
o ~ would make the denominators the same. Unfortunately, it is not clear . )
how users of the method deal with the.usual situation in which these twox, .
equations have different solutions. In one case, S10 48, It appears
that it was éssumed that either equation would yield a solution. In
J other cases the inyesfigation of the two equations became cbnfused and
. /
A%conciusive, because of errors.
. Y | ‘
ot : _ ~ Table 7.9 - .
] i Splitting equations with fractions .
. S16 SA 5 k=10 Smx-10
‘ .0 x+5 — 10mx+5
f; GE ! 2x243 - X '2x2+3-x
3x+9 3 X+3w ‘
.’f_- 2 . . + ‘ ’ ‘ ——
48 203 o3 2x43ml
X .
S10 5A © 5 x=10 o 5ex-10
= 10 x+5 7 10=x | . 5
. ’ . i 2 I3 —.'
| S16 58 1=x" -2 E X% - 2
,___.. ]-x T . o e
: |  1"
/ . LR
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CHAPTER 8 ‘s

We now return to the five general issues raised in the Intro-~

duction,;and consider what 1tght has been'shed on each by the re-

sults of the study.

“

Errors and mechanisms We have argued that the errors we observe can

be divided into three types: operator, applicability, and executioﬁ:
The three types have differeﬁt%preventiye or remedial measures.

Operator errors seem to reflect incorrect knowledgel ;r incom-
plete knowledge that is ove?extended ander the pressure of solving.
The erroneous steps seem to be thevdi;torted and fragmeﬁted, but seldom
completelygﬁnrecognizable, images of gorrect operations. lThg task of
preventing such errors seems toAdiyide into three parts: Making initial
learning more sdccessfu%, di;couraging the later construction or re-
constzyctlon of incorfffifgperators. and correcting existing incorrect
operators. We have'f;ttle to suggest about this last part of the task,
beyond remarking that the kind of detailed diagn;sis we have attempted
may be essential in dealing with students' difficulties. This 5tudy

. .
includea no intervention, and su we do not know what would have happened
i€ S1, who gave suéh an articulate account of the cancellation errors En
Figure 5.6, had been glven at tﬁat mément an,accura;e analysis to con-
sider. ' l', |

The §qse detailed analysis 6f érrprs may be imﬁortqn; fn improving
initial learning. wifh reshectgto deletjon and recombination er}ors in

particular it seems students are fnclined to take a rather generalized

view of the operations they are learn?ng, and with the nature of the u
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likely over generalization;in mind it might be .possible to choose exam- ~ .

ples in'teaching that would brlng_oqt the. needed discriminations.
Sl A second attack on the problem of initial learning s through meta-
knowledge of right and wrgng, If the student can distinguisK a correct LA

operator from an iqc%rrect one, then he or she can edit out the wrong

guesses and generalizations that must inevitably flow from limited exam-

ples and ill-understood exp1anations. We will return to this in dis--
cussingwthe kinds of knowledge students should have. ;~ .-

o _ In discouraging the construction or reconstruction of erroneaus,

P

. | operations knowledge\bf right and wrong is ;till clear[y.impor{gntl
~since the broblem of filtering correcf operations from wrong guesses
(Métz, 1979a) is fbndamcntally the same in Construction as it is in
initial}lgarning‘ There is a second attack on this problem, however,
T that may be worth considering, .though it is disturbing: Perhaps students
should be discouraged from trying tolfigure out algebraic operations:
they do not underé;and. It may be that trying to stretch inadequate
knowledge results .in crcating,.patchiﬁg up, and so preserving false.A_
notions, as well a; preventing requests‘for,help. Such an approach
raises the problem of helping the student see the boundary of what it
A is sensible to try tofwork out and what it is not, but that problem is

a real one and cannot just be ignored.

o ' " The bulk of applicability errors involve mishandling of parentheses,

with the’ terms in an expression being assigned a false grouping. These
efFrors are quite common even among accurate solvers, so it is unlikely
that they reflect a real misunderstanding of the syntax of expressions.

Rather, 1t seems that the patterns of parentheses is just not as salient

o Qs it should be, and when solvers are blocking out the structure of ex-

5.
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pressions it may‘be'ovefridden by such other grouping factors as the

repeated form in equation 6B. Unfortunately,-it seéms that it is the

absence of parentheses, rather than presence, that is most frequently

) LY :
overlooked, so devices to draw attention to the parentheses might be in-

. ' !
effective, Perhaps students\Bould rewrite'exPressions with extra spacing
between terms ﬁpat are not within parentheses.

Some students, such as the one who confused 'one over two x'' and

L)

"one-half x'', do have t?ouble with the syntax of  expressions. \Probably

~

more confusions about syntax are masked by-the generic deletion and
recombination operators, which blur many distinctions. Since expressions
are representations of calculation§, and the syntax is intended to cap-

/ . -
ture the nﬁﬁsssany information of order.of operations and assignment of

[ -~ . .

-arguments to arithmetic operations, students might benefit from exercises

in'which comﬁlex calculations were to be written asvgxpr%§§10ns. PrpgrgTs
- .

for.a computer or cglculator might be good representations of calculations

f rom w*ich to translate to expression form,

Like applicability errors, execution errors are relgtively comhonv
even among agéurate §olver§. Aiso, there is not the clquing oé these
errors thaf is seen wi?h some of the operator efrors: no solver had more
than 3 partial execution or control failure errors in Session . It is
plausible téat there is a tradeoff of speed and accuracy in equation
sé!ving as wfth bther taskﬁ, and that the price in efficiency of carry-
ing out all operations flawlessly would be very large. Hbré data would

. * .
be needed, however, before it could be concluded that students' execgtion

. X
accuracy could not be improtsg withoft loss of efficiency.

Good solvers Not much was learned about the différences between more

and less accurate solvers. There were a few'glimpses of the kind of per-

~

L
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formance one might have gXpected of expert solvers, but no sharp con-

trasts on a group basls. between the most and least accurate solvers in

»”

'the-study beyond the difference in accuracy itself. There were sugges-

tions of tighter strategic control, indexed by agreement with the bacic

Bundy strategy, more economical solutions, and greater use of repeated

. subexpressions as units of analysis. Further wollk with more challenging

problems and mofe.experienced solvers might sharpén and add to these

’

Kinds of knowledge in algebra Equaﬁksn solvers have to know a set of
correct operators. They also have to knoQ what to do to an equation, to
move it closer to solution, and what o;erators will help. Jo decide
what to do to an equation, the solver must‘know what features of an equa-
tion, such as number of instances of the unknown in a denominator, are
important in deciding what to do. We have presented difficuities that
reflect voids or distortions in these bodies of knowledge.

We argued th;t operators are not simple units of knowledge. It
apfears that there are operators like "factor' that have other operators
as parts so that the student can use the notion ''factor’ in planning,
an& then expand it into its constituents when it must be carried out.

Even operators that do not seem to have other operators ag parts seem

_to have structure, in that a studegt may have only partial knowledge of

theé. Part of the knowledge of adding and multiplying seems to be that
they accumulate things, while subtraction and divisiqp both take away

things. We h#ve argued in the case of recombination and deletion errors
that these p?eces of partial knowledge can determine the form and occur-

rence of errors.

Strategic knowledge is also not simﬁle. or at least ndt as simple

~as In the Bundy model. It appears that a solver needs to distinguish

1

:3:3 .




" Yinear from qya&ratic equations, and have a different plan for each.

- but many have no knowledge of some of them.

‘another student are excorptod fn Figures 8

*

When the unknown is present in g denominator, a check for extraneous roots

:
must be appended to the normal plan, The solver must know that if there
are no occurrences of the unknown something;bas gone wrong, and that
. / . )

multiple occurrences of the unknown must be reduced to one before the
equation is solved. At a more tactical level, the solver has to know
what operators to use to collect occurrences, including the situation

in which one occurréace has ap implicit.''1' a5 its coefficient. An- -
other important area of tactics is the handling of x in the denominator

especially the often baffling form "'1/x = expr''. Many solvers have ex-

plicit knowledge of all of these things, 5any have implicit knowledge,

«

So much for basic equipment. A student w'ho‘had the above knowledge'i‘ A
would be a good solver. But it appears that there are other thing: tﬁat
a solver should know, that are.not parts of the skill itself, but are
i&portan; in creating and maintcining the skill, , ,

We have already touched on the importance of knowing how to tell a

correct operator fromesan incorrect one. |t appears that every student .

must encounter wrong ideas of operators. These may be formed by the

~student while learning in class or from'a text, or while attempting to

apply already learned material. They might originate in a misanalyzed
example, ineg false Inference, or simply through memory failure The
student must be able to detect and reject these false Ideas.

Despite the importance of this ability, some students appear to
have no idea why some operators that might. occur to them are yalid andl ﬁ
others are not, beyond appeal to authdrity{n Asked aboL: an error in’
combining fractions, one student said, 'Well, | can't tell ygz what the
rule is but I've seen It done b;foré.“"T e fore extensive remarks of

B T S S B g D L L LS T P e Y
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Figure 8.!

Comment on knowing the rules

. E:

S:

L7 ]

asks about what rule is used transforming
ax+bx-2x = 234ab' to 'atb-2 = 2-b'

“Host!y what |'ve been doing is just mainly
from memory or its been trying to be from
memory.- | know. there's a lot of rules in
algebra that you have to learn first bafore
you can go on to you knhow, that's the most
important thing is to learn those rules...

If | had a book maybe...

| personally can't remember anything about
those.,. You have to go ask the teacher.'

""Ah, so again I'm asking you for help. I¢
there a rule you could tell me that would
tell me when | could canccl‘gomething of that
sort...7"

"That | could tell you, that | could tell you,
no. The book could tell you, Tyas'

"I mean apart from asking someone If there is
any way that | could figure out whether a
particular thing that I'm doing would be
correct or whether it wouldn't be? Can you
give me any advice along those lines?"

"It's always safe to ask the teacher if you
don't know something. Maybe consult with a
friend who is doind well in the subject or
knows what he's doing."

" f I'm all by myself in a locked room or some- -
thing is there some way | could figure it out,
like is there some way | could relate it to
other things that | might know about algebra

or do | have to, you know, are the rules just
things that you have to know or..."

onu re going to have to knew the rules. Whether
r not you can know If its the end of .the problem
pretty much depends on how much you have studied
and how much, you know. You know again it re-
1ates,back.to the.rules."
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~:;~ There seem to be two ways students might test the:validity of

their idéas, use of‘prinéiples and checking. .”Princigles” réfefé to | Y
the basic mathematical probérties of the arithmetic operations tHat
‘ ~underlie the manipulations of algebra: that mulfiplicatfcn.d?stributes\
,over addition, that multiplication and division are inverses, and so
‘on. A student who knew.these principles well could reject operations
that coyld not be derived from them. Unfortunate!y, the basic prfn- '
ciples are almost as numerous and complex as the algebraic operators.
SN " based on them,.éo students will be doubtful about them. Further, thé
testing of an SperatiOn by use of the principles is an exercise in |
proof, and ma? require séme creativity. It is not transparent how \
Cross mﬂltiplicq}ion is related té the basic principles, for e%ample,
because fhe operafion as it.is performed suppresses the under!yihg
mult{plications. | R
In our earlier discussion of checking wé distinguished global and
local methods, where local methods are fhose\that cén provide informa~
tion about the correctnessAof a single step., Of thesé, trial evaluation
seemed to be the method to prefer, for poor solvers, becaqse of its
generality and ability to detect both stable and transient errors.

While the basic 'trial execution method is app]icable directly

only to steps that replace an expression by an equivalent one (reductions

« In.the terminology of Hatz; 1979a), it can be e;tended to most deduc- .

tions, steps that transfqrm‘the entire equation, as fol[ows. Most de-

S ;

ductior' can be analyzed as performance of the same operation on both -

sides of an equation, and simplif!cation. ‘Under this decomposition, it

{

is the s!mpliflcatfons where many errors occur, and the simplifications o

‘ \
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, are reductions, that can be checked by tiial evaluation. Figure 8.2 K
. " f shows how this method could be'used to detect an invalid operation on .
. Coa L I ) ' o . ‘ : '
i reciprocals. . . . o, .
¢ ' - g “ \
Two deductions to which the method cannot be applied are splitting
‘ of a quadratic equation by factoring, and use of the quadratic formula. |
L These cannot be analyzed as performing the same operation to both sides
‘of the equation. Cross multiplication is a borderline case, 1t can -be :
analyzed as multiplying both sides of the equation by the product of the °
TN i - . . ‘. ' ™
denominators, and then simplifying, but as was said above this analysis N
i ' . ‘ R
is not ‘obvious.
Figure 8.2 ,
‘o , © Use of trial evaluation to check,
~ an operation on reciprogals
Problem: Can ] be replaced Ey a+ bl . '
' el '
a b D)
Check:
Substitute a = 2, b = 3
) . i | | , 6 :
.'.+.‘.‘= .L + .!. _} 3 ‘ g ’ ‘ '
: a b 23 4 .
a+b—32+3—3 5
. ) 5 ¢ g-. SO replagemcnt is not valid. .
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Despité these’limitations, it appears that “checking by trial"

education might help students filter good'ideas‘from bad. But would

8

they use it? One promising indication is-that students do seem often

to be aware that they are performing doubtfui\ggirations, as some of the

»

comments collected in this report show. Thus .they recognize some occa~

. )
sions when local checking would help them, if they knew about it.

. Lack of knowledge of how to check is probably not the only reason
. students do not check, however, Checking is taught as a means of in-
creasing accuracy. As long as checking is Just a way to be more sure
of the answer to a given problem, students are free to use it or not

according to the accuracy and time pressures they feel. For good solvers,

u\\-‘/) ~it is often rational not to check for this reason. Poor solvers, however,

™\

need to see checking as a way of evaluating their kﬂbwledge, not their

answers,
& r

This leads to the last kind of knowledge of algebra that we will

-

discuss. Students need to know how to distinguish incorrect operators

from correct, ones but they also need to see how this ability fits imto

the lqarning task, They need to know that they will form misconceptions

and make errors, despite their best efforts, and that there are specific
A~ -’\

( , actions they can take to deal with these difficulties. Testing and
correction of knowledge should be seen as a normal and important activity,
not as an optlion, or worse, as something good students could avgid. Dis-
cussion of common errors, with emphasis on the often sensible analysis

- that lies behind thém, might help develop thg‘necesaary perspective on

. : learning.

i
1
N




129

Meaning in algebra As the Bundy program illustrates, one can do algebra
.

without understanding it, in the senss of being able to assign any mean-

ing to the entities being manipulated. We have seen that there is very

little evidenge that ‘the human solvers in the study made use of meanings

Yo
A

in their work. We have suggested nevertheless, that meaning is important

when knowledge »f algebra is learned or recalled. This seems true not
just because of the helpful redundancy that any interconnections in a

body of knowledge seem to provide, but because of the specific role mean-

- 5

ing can play in allowing the validity of operators ta be tested, as in the

~

trial evaluation method. There the relation between expressions‘and cal-

.

~a

culations is §entra1.. Another area in which we have §uggested,this rela-
tion could be useful is in learning the syntax of expressions.

The expreésion-cajculation system is an interesting domain of appli-

~

cation of Greeno's (1978) ideas on understanding. ~Greeno suggests an
analogy with language comprehension, in which to understansd an entity, say
a sentence, is to have an internal representation of it that is coherent,

connected to’ other relevant knowledge, and accurately captures the essen-

L
tial features of the entity. In the expression-calculation domain, under-

_ : J
standing an expression means being able to cohstruct an internal represent-

atfon of a calculation? The calculation that the expression represents}
To straighten out the;e many uses of ”représqnt”, let us try to

trace the parallel with sentence comprehepsion more closely. When a

sentence is understood, the/;ntefnal representation.of It has to be'mote'

than a coding of the sounds, say, that make up the sentence. It is'common

to claim that the representation should be a proposition (or set of pro-

positions). But prognsitions are not things tha. can exist In sgmeone's

»

head, so the representatibn of the sentence is not really a proposition

[
- .
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* but a representation of a proposition. In the same way, the internal

represeftation of an expression would not be a calculation, but a re-

- presentatipn of a'calculaéion. Finally, what proposition is it whose
representation i$ the appropriate representation of the sentence? Just

the ﬁroppéition that the sentence itself represents. Figure 8.3 shows the

_analogy between senteace and expression and calculation graphically.

"

This linguistic analogy may be helpful in clarifying how establish-
'ng calculations as meanings for expressions could belp students. There

is research indicating that having meanings assigned helps enormously in

4
v

the learning. of the svntax of artificial languages (Moeser & Bregman,
1972, 1973). The problem of learning operators that preserve the meaning
of ekpressions might seem to .be parallel to the problem of learning méan~
ing-prqserving.transformations, but it is not. The operations of algébra
ds not alter tHe rules of syntax for expressions: an expression with gero

added to it has the same syntatic rules of formation of any other expres-

. . p
sion. A passivized sentence may likewise "“ave the same surface grammar as

sentences generally., But a sentence like '"John gave Mary the book,'' does
not follow the ordinary rules of synfax. So learning meening-preserving
transf&rmations cannot Qg separated from learning the syntax of sur-

face strings in theksame way that learning a}gebraic‘mqnipuiations

can be separated from learning the syntax of expressions,

Errors and the pgxﬁholqu of skill Matz (1979a) -and Brown (1979).

have outlined related theories of the origin of errors in skilled per-
farmance. In both theories, errors arise when‘{ncomplete knowtedge is
extended to cover a new problem, and the nature of the error that is

made "in the extension process is influenced by the partial knowledge"'

A
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Figure 8.3

Paralle] between understanding a sentence
“and understanding an expression

<

Sentence represents% Proposition
represents ' -
7 Mental
Representation :

To understand a sentence, one needs a mental representation

of the proposition.
N .

represents ‘ .

Expression — Calculation

represents ' N
Mental ’
Representation

*
. .

To understand and expression, one needs a mental representation’

of the calculation.




' that is avanlalle, and by ideas the subJect has about the character of
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the operations be;ng learned or applied
tn Matz's theory, operators are constructed from the partial know-
ledge available, and then filtered By a family of ”ctftics” which accept -

or reject the construction according” to whether it has certain désirable

‘
!

" general properties. For example, Matz suggests that an operator in'alge—

bra should '"touch every part': it should not ignore any piece of the ex- *
pression or expression being transformed. 4Hostractual operators have

this property, though there are exceptions. For example, replacement

of 0 expr by 0 does not require any test?ng, analysis, or copying.of

L A baats o SV

expr. Matz argues that students are likely to make generalizations(tﬁke\\ :

"touch evéry’part”. and that theur constructed operators wull be made to

obey the generalizutnons.

An Brown's theory, developed most ful]y for algorithms in arith-
metic, students to to apply their existing partual algorrthms and run
into missing or umposs:ble steps. They then use their accumulated
general knowledge to 'patch'' their algor?thm so that it.can be executed :

- .
to completion In the patchung process they use knowledge about the
character of famnliar and lakely steps, fnformation ab0ut the desired:
outcome of the algorithm, and also about featurgs of the execution

»
process. itself the algorithm should not loop, for example

<
While these theories specify mechanisms for the production’ of
errors. the mechanisms are quttc flexible, andsdepend heavily on the .
specific knowledge possessed by a,solver to shape errors. Conse-

quently, it is difflcult to support or fqlsify these ideas by an exam-

ination of errors such as those wa have-selected. Considering students

’fii
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comments, we did not find students artjcuiating principles like ''touch

everyvpart”; and these would hare.to be implicit knowledge for our solvers.
o | | Students' comments do show, however, that the sort of stretchung
of knowledge called for in both theories does occur for many solvers,
'"\' - and a few of the protocol excerpts presented indicate some of’ the know—.
;& ' ledge solvars ?rsng to oear on the problem, For example, in case S5 6?
| in Table 5.8 szows the erroneous application of cross multiplication .
T . halted by ‘the :ppearance of a second equal sign, which 'violated the stu- .'
| dents' knowledge of the form.of an equatlon Above the level of individ-
ual operators,_we\have examples showing a number of indicators or pro-
-gress or trouble that stodents use, colleoted*in Table 7.5, -
We have obtained some general support, then, for the ioeas‘of Matz
and Brown, and some spec}ffcs.. it might be possible to fill in mdre of
the details in.rhese schemes by asking students to evaiuate;operators
“proposed by the experimenters. ?Lis might elicit more comments from the
students we obsained, as well as getting a more complete picture of the
criteria students may be using by going beyond just self-generated errors.

¢

Two particular categories of errors which might repay further anal-

n
»

ysis are déletion and recombination errors. While these are perhaps

-

consistent with the Matz or Brown mechanisms, it seems that these grc&?%
' [

- originate from general ideas of the fask, rather than just being oo

passed bikcritics that embudy this knowledge, as in Matz's view, or

re8ulting. from a patch on a mutilated algor?fhm Since algebra can

R /g;\thought of as an oxethse In pure symbol manipulation; it is % ' S
‘ % ftempting to imagine that students might- organize their. knowledge of )
;“. " operators around the key notions of deletion and rearrangement, and B ;;




arrangement might be seen as detai! that could be éupprpssed. If

. s ——— —————— —

\‘.v, ! ! ’
.so develop operators. to perform these functions. The existence of
_severll'different deletion operations, and of restrictions bn,re~
this” analysis is correct, it places the origin of some errors closer

to the center of the learning process than the critics or patching

v

mechanisms of Matz’ and Brown, g

>
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